
 
 

A review on SRAM-based computing in-memory: Circuits,
functions, and applications

Zhiting  Lin,  Zhongzhen  Tong,  Jin  Zhang,  Fangming  Wang,  Tian  Xu,  Yue  Zhao,  Xiulong  Wu†,  Chunyu  Peng,
Wenjuan Lu, Qiang Zhao, and Junning Chen

School of Integrated Circuits, Anhui University, Hefei 230601, China

 

Abstract: Artificial  intelligence  (AI)  processes  data-centric  applications  with  minimal  effort.  However,  it  poses  new  challenges
to  system  design  in  terms  of  computational  speed  and  energy  efficiency.  The  traditional  von  Neumann  architecture  cannot
meet the requirements of  heavily  data-centric  applications due to the separation of  computation and storage.  The emergence
of computing in-memory (CIM) is significant in circumventing the von Neumann bottleneck. A commercialized memory architec-
ture, static random-access memory (SRAM), is fast and robust, consumes less power, and is compatible with state-of-the-art tech-
nology. This study investigates the research progress of SRAM-based CIM technology in three levels: circuit, function, and applic-
ation. It also outlines the problems, challenges, and prospects of SRAM-based CIM macros.

Key words: static  random-access  memory  (SRAM);  artificial  intelligence  (AI);  von  Neumann  bottleneck;  computing  in-memory
(CIM); convolutional neural network (CNN)

Citation: Z T Lin, Z Z Tong, J Zhang, F M Wang, T Xu, Y Zhao, X L Wu, C Y Peng, W J Lu, Q Zhao, and J N Chen, A review on SRAM-
based computing in-memory:  Circuits,  functions,  and applications[J]. J.  Semicond.,  2022,  43(3),  031401. https://doi.org/10.1088/
1674-4926/43/3/031401

 
 

1.  Introduction

Recently,  with  the  breakthrough  of  key  technologies
such as big data and artificial intelligence (AI), emerging intelli-
gent applications represented by edge computing and intelli-
gent life have emerged in the trend of the era of rapid devel-
opment[1, 2].  These  emerging  intelligent  applications  often
need  to  access  the  memory  frequently  when  dealing  with
events. However, von Neumann architecture is the most com-
monly  used  architecture  for  data  processing,  which  is  imple-
mented  by  separating  memory  banks  and  computing  ele-
ments.  Massive  volumes  of  data  are  exchanged  between  the
memory and processing units, which consume large amounts
of energy. Furthermore, the memory bandwidth limits the com-
puting  throughput.  The  resulting  memory  limitation  in-
creases energy wastage and latency and decreases efficiency.
This  limitation  is  more  severe  in  resource-constrained
devices. Therefore, it is important to explore solutions to over-
come the issue of the “memory wall.”

As a computing paradigm that may address the von Neu-
mann  bottleneck,  researchers  have  proposed  the  computing
in-memory (CIM) technology. The so-called CIM is a new archi-
tecture  and  technology  for  computing  directly  in  memory.  It
breaks through the limitation of traditional architecture, optim-
izes the structure of storage unit and logic unit, realizes the in-
tegration of  storage unit  and logic  unit,  and avoids  the  cum-
bersome  process  of  transmitting  data  to  processor  register
for calculation and then back to memory, thus significantly re-
ducing  the  delay  and  energy  consumption  of  the  chip[3].  Re-
search  on  static  random-access  memory  (SRAM)  has  become

an active topic in CIM for the robustness and access speed of
its cells.

To improve the performance of the SRAM-based CIM, the
SRAM  bitcell  structure  has  been  modified  and  auxiliary  peri-
pheral circuits have been developed. For example, read–write
isolation  8T[4, 5],  9T[6−8],  and  10T[9−11] cells  were  proposed  to
prevent the storage damage caused by multirow reading and
calculation.  Transposable  cells  were  proposed  to overcome
the  limitations  of  storage  arrangement[12−14].  Peripheral  cir-
cuits,  such  as  word[15, 16],  bit[10],  line  digital-to-analog  conver-
sion  (DAC),  redundant  reference  columns[1, 5],  and  multi-
plexed  analog-to-digital  conversion  (ADC)[17],  were proposed
to convert between analog and digital signals. With these mod-
ified  bitcells  and  additional  peripheral  circuits  for  SRAM  CIM,
researchers  have  achieved  various  computational  operations,
including in-memory Boolean logic[5, 7, 18−27], content-address-
able  memory  (CAM)[5, 19, 20, 28, 29], Hamming  distance[8],  multi-
plication  and  accumulation  (MAC)[1, 2, 9, 10, 15, 17, 30−34],  and  the
sum of absolute difference (SAD)[35, 36]. These in-memory ope-
rations  can  expedite  the  AI  algorithms.  For  example,  Sinangil
et  al.  implemented  a  multibit  MAC  based  on  a  7-nm  FinFET
technique to accelerate the CNN algorithm, which achieved a
recognition  accuracy  of  98.3%[37, 38].  Agrawal et  al.  proposed
a novel “read–compute–store” scheme, wherein the XOR calcu-
lation  results  were  used  to  accelerate  the  AES  algorithm
without  having  to  latch  data  and  perform  subsequent  write
operations[18].

As illustrated in Fig. 1, we reviewed three levels of SRAM-
based  CIM:  circuit,  function,  and  application.  The  circuit  level
is  reviewed  from  two  aspects:  1)  bitcell  structures,  which  in-
clude  read–write  separation  structures,  transposable  struc-
tures, and compact coupling structures, and 2) peripheral auxi-
liary  circuits,  which  include  analog-to-digital  conversion  cir-

  
Correspondence to: X L Wu, xiulong@ahu.edu.cn
Received 28 AUGUST 2021; Revised 4 NOVEMBER 2021.

©2022 Chinese Institute of Electronics

REVIEWS

Journal of Semiconductors
(2022) 43, 031401

doi: 10.1088/1674-4926/43/3/031401

 

 
 

https://doi.org/10.1088/1674-4926/43/3/031401
https://doi.org/10.1088/1674-4926/43/3/031401
mailto:xiulong@ahu.edu.cn


cuits,  digital-to-analog  conversion  circuits,  redundant  refer-
ence columns, digital auxiliary circuits, and analog auxiliary cir-
cuits  (Fig.  1(a)).  The  second  level  is  reviewed  from  two  as-
pects:  1)  pure  digital  CIM,  which  includes  Boolean  logic  and
CAM,  and 2)  mixed-signal  CIM functions,  which include MAC,
Hamming  distance,  and  SAD  (Fig.  1(b)).  The  third  level  is
mainly reviewed from the aspects of the application of the ac-
celerating CNN, classifier, k-NN, and AES algorithms (Fig. 1(c)).
Finally,  the  challenges  and  future  development  prospects  of
SRAM-based CIM are discussed from these three levels. 

2.  Memory cell in static random-access memory
(SRAM)-based computing in-memory (CIM)

In  the  core  module  of  the  SRAM,  the  memory  cell  occu-
pies most of  the SRAM area.  Irrespective of the complexity of
operations implemented in the memory unit, the primary chal-
lenge  is  to  fully  leverage  the  memory  cells.  In  this  section,
we  analyze  and  summarize  the  cell  structures  in  the  SRAM-
based  CIM.  Additionally,  we  compare  the  performances  of
the reconstructed SRAM cell and the traditional structure and
discuss the possible research direction of  CIM in terms of  the
cell structure. 

2.1.  Structure of the 6T cell
 

2.1.1.    Standard 6T-SRAM structure
Standard  6T  structures  have  been  adopted  in  most  sys-

tem-on-chips  (SoCs)  for  their  high  robustness  and  access
speed. Previous studies on CIM, including Refs. [15, 16, 19, 20,

24−26, 29, 33, 35, 39−53] and Ref. [34], used standard 6T cells
considering  the  area  overhead. Fig.  2(a)  illustrates  a  sche-
matic  of  the  standard  6T  SRAM  cell.  The  6T  storage  cell  is
composed  of  two  P-channel  metal–oxide–semiconductors
(PMOSs)  and  four  N-channel  metal–oxide–semiconductors
(NMOSs),  in  which  P1,  N1,  P2,  and  N2  constitute  two  cross-
coupled  inverters  to  store  data  stably.  To  perform  CIM  with
the  conventional  6T  SRAM  cell,  the  operands  are  commonly
represented  by  the  word  line  (WL)  voltage  and  storage  node
data.  The  processing  results  are  often  reflected  by  the
voltage difference between BL and BLB. 

2.1.2.    Dual-split 6T cell
Khwa et al.[1, 2] designed a 6T cell  with double separation

(WL  separation  and  ground  line  separation),  as  shown  in Fig.
2(b),  which  is  in  contrast  to  the  standard  6T  structure.  When
the dual-split 6T cell performs basic SRAM read and write func-
tions,  it  connects  the  left  WL  (WLL)  and  right  WL  (WLR),  as
well  as ground, CVSS1, and CVSS2. The read and write opera-
tions  are  consistent  with  those  of  the  standard  6T  cells.
However,  this  structure can achieve more sophisticated func-
tions  owing  to  the  separated  WL  and  GND.  The  structure  al-
lows  the  use  of  different  voltages  to  represent  various  types
of information. 

2.1.3.    4+2T SRAM cell
Dong et  al.[20] proposed  a  4+2T  SRAM  cell  (Fig.  2(c)).  The

4+2T  memory  cells  were  used  to  decouple  data  from  the
read path. The read operation was similar to that of the stand-
ard 6T SRAM, but the write operation was different as it adop-

 

(b)
CIM

SRAM-based

Logic

Memory

XNOR、XOR、IMP、OR

Single-bit

Multi-bit

Circuit

Function

AND、NAND、NOR

signal  
The mixed-

The digital 

SRAM-based Content 
Addressable 

Boolean

MAC

SAD

Ternary dot product
Binary dot product

Hamming Distance

Ternary CAM

Binary CAM

The  function of 

SRAM-based CIM

Digital -to- Analog conversion circuit
Time

Control

Redundant 

reference column

(a)Bit-cell

Application

Layer2
Layer3

Layer4
Full connection 

Layer

CNN algorithm Dog
Pig

Cat
Cattle

Layer1

S0 S1 S2 S3

S4 S5 S6 S7

S8 S9 S10 S11

S12 S13 S14 S15

Bytes Rows columns Key

Shift Mix
Round

Add

128 bits 

data in

3.3%(50% 

XOR)
(100% XOR)LUT Performed on 

state matrix

128 bits data outN<=10

Sub

AES algorithm

k-NN algorithm (k-NN)

Classifier algorithm

56 32 10 18

90 23 128 133

24 26 178 130

2 0 255 220

10 20 24 17

8 10 89 100

12 16 178 100

4 32 233 112

46 12 14 1

82 13 39 33

12 10 0 30

2 32 22 108 (c)
substract

SUM
456

resultspidi

I1 I2 results di - pi

Column-based
Weak classifier C1

Column-based
Weak classifier C2

Column-based
Weak classifier C3

Column-based
Weak classifier C4

xZ1

xZ2

xZ3

xZ4

In memory

BC1,1

BC1,1

BC1,1

xZ1xZ1

BC1,1

BC1,1

BC1,1

xZ1xZ1

BC1,1

BC1,1

BC1,1

xZ1xZ1

Column-based weak classifiers

Adder/Subtractor

Boosted strong classifier

Function

Overall framework of SRAM-based 

CIM

Circuit level:

Function level:

Application level:

Bitcell structures

Peripheral  circuits 

Digital CIM

Mixed-signal CIM

CNN

ClassifierAES

k-NN

1

2

1

2

1

2

3

4
CIM

Analog-to-Digital  conversion circuit

 

Fig. 1. (Color online) Overall  framework of static random-access memory (SRAM)-based computing in-memory (CIM) for the review: (a) various
functions implemented in CIM, (b) operation functions realizable with CIM, and (c) application scenarios of CIM.

2 Journal of Semiconductors    doi: 10.1088/1674-4926/43/3/031401

 

 
Z T Lin et al.: A review on SRAM-based computing in-memory: Circuits, functions, and applications

 



ted  the  N-well  as  the  write  word  line  (WWL),  and  the  source
ends  of  two  pull-up  PMOS  were  used  as  the  write  bit  line
(WBL) and write bit line bar (WBLB). The design was implemen-
ted  in  the  deep-decomposed  channel  process,  where  the
bulk  effect  of  the  circuit  was  more  significant.  To  write  data,
the  threshold  voltage  of  the  PMOS  can  be  significantly
altered  by  changing  the  N-well  and  PMOS  source  voltages.
During  the  application  of  CIM,  different  voltages  on  the  WL
and storage node represent the different operands. 

2.2.  Cell structure with additional devices for SRAM-

based CIM

The  simple  6T  structure  cannot  realize  complex  comput-
ing  operations  and  does  not  fully  meet  the  requirements  of
CIM.  Therefore,  studies  on  CIM  have  modified  the  traditional
6T  structure,  which  can  be  roughly  divided  into  the  follow-
ing four categories. 

2.2.1.    SRAM cells with separated read and write paths
Compared  with  the  6T  cell,  SRAM  cells  with  separated

read  and  write  do  not  suffer  from  reading–writing  disturb-
ances;  hence,  within the memory array,  it  can simultaneously
activate  multiple  read  WLs  to  complete  the  operation.  These
cells  contain  a  standard  6T  cell  and  an  additional  read  port
composed of extra transistors to separate read and write. The
write  operation  is  similar  to  that  of  a  traditional  6T  cell.  For
the  read  operation,  these  cells  can  read  data  through  a  read
bit line (RBL) discharge or charge.

Fig.  3(a)  presents  a  schematic  of  a  standard  8T  cell,
where M2 and M1 form an additional read port. A large num-
ber  of  pioneering works  have used standard 8T  cells  to  com-
plete  CIM  operations,  including  a  multibit  dot-product  en-
gine  for  computing  acceleration[3],  X-SRAM[18],  and  double
WLs  SRAM[5] for  Boolean  logic  operations,  a  7-nm  CIM  SRAM

macro for multibit multiply multibit[37, 38], and a computation-
al  SRAM  (C-SRAM)  for  vector  processing[54].  To  reduce  the
area  cost,  Jiang  Hongwu et  al.[55] proposed  a  7T  cell  to  com-
plete  the  dot  product  operation,  as  shown  in Fig.  3(b).  To
achieve  better  performance  and  execute  more  complex  ope-
rations, Srinivasa et al.  utilized 9T SRAM cells to perform CAM
operations[6]. Fig.  3(c)  presents  a  schematic  of  the  9T  SRAM
cell.  In  Ref.  [8],  Ali et  al.  completed  the  Hamming  distance
based on a  9T  SRAM cell.  In  Refs.  [9, 10, 56, 57]  and Ref.  [17],
10T SRAM cells were used to perform CIM of the dot product
and  XONR,  as  shown  in Fig.  3(d).  These  studies  demon-
strated  the  advantages  of  the  read–write  separation  struc-
ture  in  CIM,  but  the  additional  transistors  also  reduced  the
storage density. 

2.2.2.    SRAM cells based on capacitive coupling
SRAM cells based on capacitive coupling add additional ca-

pacitances  inside  the  cell  to  perform  the  operations.  Jiang et
al.[31, 58] proposed a C3SRAM (capacitive-coupling computing)
cell, which is composed of a standard 6T cell, a pair of transmis-
sion transistors  controlled by the storage data from the gate,
and a capacitor,  as  shown in Fig.  4(a).  In contrast  to C3SRAM,
Jia[59, 60] and Valavi et al.[61] proposed a multiplying bitcell (M-
BC)  circuit,  where  the  transmission  transistors  were  con-
trolled  by  the  storage  data  from  the  drain  or  the  source,  as
shown in Fig. 4(b). These cells can execute a dot-product oper-
ation  between  the  input  vectors  and  the  stored  weight.  The
calculation  result  is  represented  by  the  number  of  capacitors
storing  charge.  Therefore,  cells  based  on  capacitive  coupling
are  less  prone  to  process  variations.  However,  the  introduc-
tion  of  capacitance  into  the  memory  cell  increases  the  over-
all power consumption and area overhead.

In  Refs.  [31, 58],  the  capacitance  in  the  cell  can  be  dir-
ectly  coupled  and  shared  through  the  MBL.  However,  in

 

BL BLB

WLRWLL

PU2

PD2

INV2

PG1 PG2

BL BLB

Shared

CVSS

CVSS1

CVSS2

PU1

PD1

INV1

VDD

INV2INV1

VDD

VSS VSS

WL

N3 N4

P1 P2

N1 N2

Portless Write using N-well

WBL WBLB

VSS

WLL

RBL/

SL
RBLB

/SLB

Decoupled 

Differential Read
RWL/

ML

RWLB/

MLB

(a) (b) (c)

Q QB

 

Fig. 2. (Color online) (a) Standard 6T SRAM cell, (b) dual-Split 6T SRAM cell, and (c) 4+2T SRAM cell.

 

(a)

WWL WWL

WBL WBLB

RWL

Q
QB

RBL

M1

M2

8T SRAM Bit-Cell

M3 M4

QB Q

WWL

WBLB WBL

C_RWL (R_RBL)

7T SRAM Bit-Cell
C_RBL

(R_RWL)

(b)

M2M1

M3

WWL WWL

BL BLB

RWL

SL

Q QB

RBL
M1

RWL

RBLB

M2

M1'

M2'

(d)

10T SRAM Bit-Cell

M3 M4Q

QB

WWL

M3 M4

M5

WBL WBLB

RWL

RBL RBLB

M1 M2

Write path

Read path

(c)

9T SRAM Bit-Cell

 

Fig. 3. (Color online) SRAM cells with separated read and write: (a) standard 8T SRAM bit-cell, (b) 7T SRAM cell, (c) 9T SRAM cell, and (d) 10T SRAM
cell.

Journal of Semiconductors    doi: 10.1088/1674-4926/43/3/031401 3

 

 
Z T Lin et al.: A review on SRAM-based computing in-memory: Circuits, functions, and applications

 



Refs.  [59, 60],  the  capacitors  inside  the  unit  need  to  be
coupled  with  each  other  through  additional  switches.  There-
fore, in the latter work, additional transistors need to be intro-
duced, which increases the area of the cell. In the selection of
capacitance type, Refs. [31, 58] selected MOSCAP which consti-
tutes  27% of  the bitcell  area.  However,  Refs.  [59, 60]  selected
MOMCAP  that  is  formed  using  metal-fringing  structures.
MOMCAP can be placed on the top of  the cell,  so there is  no
additional  area overhead.  However,  compared with MOSCAP,
MOMCAP has a  lower capacitance density  and is  not  suitable
for large capacitances. 

2.2.3.    Transposable SRAM cell
Fig.  5 presents  three  different  forms  of  transposable  bit-

cells: 1) Wang et al.[12, 13] proposed a transposable bitcell con-
taining  two  pairs  of  access  transistors,  as  shown  in Fig.  5(a).
There are two types of writing and reading in the basic SRAM
functions  of  this  structure:  the  one  used  by  columns  and  the
other  by  rows.  When  performing  CIM  operations,  the  struc-
ture  can  achieve  two-directional  computing.  2)  Similarly,  Ji-
ang et  al.[14, 55] proposed  a  separated  read–write  transpos-
able  bitcell,  as  shown  in Fig.  5(b).  This  structure  can  choose
to  read  data  by  rows  or  columns.  In  addition,  this  structure
can perform CIM operations on both row and column dimen-
sions simultaneously using a row bit line (R_BL) or column bit
line (C_BL). 3) Lin et al.  proposed a 10T bitcell to avoid vertic-
al  data  storage and improve the stability  of  CIM,  as  shown in
Fig.  5(c)[11].  In  this  study,  vector  logic  operations  can  be  per-
formed with multirow or multicolumn parallel  activation, and

CAM  can  be  achieved  in  two  directions.  Because  of  the
row–column symmetry, these cells break the limitations of con-
ventional SRAM storage arrangements. Thus, the algorithm of
forward  and  backward  propagations  can  be  flexibly  applied
to them. 

2.2.4.    Compact coupling structure
The  basic  reading  and  writing  operations  of  the  com-

pact-coupling  structure  are  consistent  with  traditional  SRAM.
However, exclusive and independent structures have been de-
veloped  for  CIM  operations.  Yin et  al.[17] proposed  a  12T  cell,
as  shown  in Fig.  6(a),  where  T1–T6  constitute  a  6T  SRAM  cir-
cuit,  T7–T10  perform  XNOR  functions,  and  T11  and  T12  de-
cide  the  execution  of  the  XNOR  function.  Su et  al.[43, 62] pro-
posed  a  two-way  transpose  multibit  cell  structure  (Fig.  6(b))
that  contains  a  common  functional  operation  unit  used  by
16 6T cells to execute multiplication in the vertical or horizont-
al direction.

Both  structures  are  based  on  traditional  6T  cells,  which
perform  operations  by  adding  compact-coupled  computing
units.  This  strategy  can  maintain  the  basic  read  and  write
capabilities of SRAM while allowing it to perform complex op-
erations.  However,  the  compact-coupling  module  also  in-
creases  the  area  overhead  and  complexity  of  the  peripheral
control circuit.

Table 1 summarizes various types of SRAM-based CIM bit-
cell.  It  was  found  that  the  area  efficiency  of  the  previous
study  was  related  to  the  structure  of  the  basic  cells.  In  CIM,
two main approaches are used to design the bitcell:  1)  main-

 

MWLB0

M
B
L

T7 T8

CC

VC0

B
L

B
L
B

T2

T3 T4
QBQA

VSS

VDD

T6

(a)

T1

T5

WL

B
L

B
L
B

QBQA

VSS

VDD

WL WL

(b)

Om,n
Xn Xbn

abm,n am,n

T1 T2

T3 T4

T5 T6

T7 T8

 

Fig. 4. (Color online) SRAM cells based on capacitive coupling: (a) C3SRAM bitcell and (b) M-BC bitcell.

 

P1 P2

N3 N4

N5

N6

N7

N8

L
W
C

HWL

V
B
L
B

V
B
L

CBLB

CBL

QB

Q

WBLB WBL

R_RWL

WWL

R_RBL

C_RBL

C_RWL

(a) (b)

M1 M2 M3 M4
RL RR

RWL

Q QB

Q QB

WL

(c)

VDD

VSS

VSS

VDD

VSS

VDD

CWL

QB
Q

T1

T3 T4

T2

T5T6

T7 T8

P1 P2

N3 N4

N1 N2

B
L

B
L
B

 

Fig. 5. (Color online) (a) Transposable bitcell contains two pairs of access transistors and (b) separated read–write transposable bit cell. (c) Schemat-
ic of the transposable 10T bit bitcell.

4 Journal of Semiconductors    doi: 10.1088/1674-4926/43/3/031401

 

 
Z T Lin et al.: A review on SRAM-based computing in-memory: Circuits, functions, and applications

 



taining  the  standard  6T  and  2)  reconstructing  basic  units  by
adding  additional  transistors  or  capacitors.  Currently,  the
main  purpose  of  cell  design  in  CIM  is  to  realize  novel  opera-
tions,  and  the  automatic  restoration  of  operation  results  is
not  realized.  In  the  future,  the  unit  design  will  focus  on  the
processing of operation results. 

3.  Peripheral auxiliary circuits of the SRAM-based
CIM

Depending on the basic cells in the array, only limited di-
gital  computing  functions  can  be  achieved.  Peripheral  cir-
cuits,  such as high-precision ADC, weight processing, genera-
tion  of  reference  voltage,  pulse  modulation,  and  near
memory  multiplication,  must  be  used  with  the  SRAM  system
to  achieve  high-performance  memory  operations  or  analog
domain computation. 

3.1.  Analog-to-digital conversion (ADC) circuit

An  ADC  circuit  is  indispensable  in  processing  computa-
tional results in an array (mostly analog value represented by
the  BL  voltage).  It  has  two  main  roles:  1)  quantifying  the  BL
voltage and 2) weighting the BL voltage. 

3.1.1.    Quantifying BL voltage
As  shown  in Fig.  7(a),  it  is  an  asymmetrically  sized  sense

amplifier  (SA)[18].  This  circuit  is  different  from  the  traditional
SA, which is only used to read data. If the MBL in the circuit is
set  to  be  larger  than  MBLB,  the  BL  will  discharge  faster  than
the BLB under the same conditions. This difference in the dis-
charging  speed  distinguishes  the  two  cases  of  input  ‘01’  and
‘10’ in the Boolean logic. Thus, in a single memory read cycle,
a class of bitwise Boolean operations can be obtained by read-
ing directly from the asymmetrically sized SA outputs.

Sinangil et  al.[24, 37] proposed  a  4-bit  flash  ADC.  This  ADC
uses SA to save the area and reduce the power consumption.
Each  4-bit  flash  ADC  uses  15  SAs  simultaneously  and  quant-
izes the analog voltage of the RBL by setting 15 different refer-
ence voltage levels (Fig. 7(b)).

In Ref.  [32],  Si et al.  used several  capacitors with different
values  to  generate  different  reference  voltages  to  quantify
the analog voltage of  the RBL.  RBL shares its  charge with the
capacitor  array  after  multicycle  operations  (Fig.  7(c)).  In  this
design,  capacitors  with  different  values  are  sequentially  con-
nected  to  one  of  the  two  ends  of  the  SA  through  a  switch;

 

6T SRAM  #0

6T SRAM  #15

L
B

L

L
B

L
B

G
B

L
<

0
>

C
-R

B
L

<
0

>

For Forward

B
W

L
M

<
0
>

B
W

L
L

<
0
>

FWLM<0>

R-RBL<0>

N3

N4
N5

N6

N7

N8

NP1 NP2

FWLL<0>

2x

1x
TWT-MC

TWT

(b)

T1

T3 T4

T2

T6

VDD VDD

RWL_P

RBLB_P

RWL_N

RWLB_N

T7

T9

T11 T12 T8

T10

(a)

T5

VSS VSS

 

Fig. 6. (Color online) Compact coupling structure: (a) 12T cell and (b) two-way transpose multibitcell.

Table 1.   Static random-access memory (SRAM) bitcells in CIM.

Parameter

Structure of the 6T cell Cell structure with additional devices

Standard
6T

Dual-
split 6T 4+2T Read and write

separating Capacitive coupling Transposable Compact coupling

Ref.
[19]

Refs.
[1, 2]

Ref.
[20]

Ref.
[18]

Ref.
[67]

Ref.
[57]

Refs.
[31, 58]

Refs.
[59, 60,
61]

Refs.
[12, 13]

Refs.
[14,
55]

Ref.
[11]

Ref.
[17]

Ref.
[43]

Cell type 6T 6T 6T 8T 9T 10T 8T1C 10T1C 8T 8T 10T 12T TWT-MC
Process
technology

28-nm
FDSOI

65 nm 55-nm
DDC

45
nm

65 nm 28 nm 65 nm 65 nm 28 nm 7 nm 28 nm 65 nm 28 nm

Added circuit No No Two
read
ports

One
read
port

One
read
port

Two
read
ports

Two
transistors
one cap

Four
transistors
one cap

Two read
ports

One
read
port

Two
read
ports

Pull-up/
down
circuits

Multiply
cell

Read write
disturb

Yes Yes No No No No No No No No No No Yes

Area efficiency High High High Med. Med. Med. Low Low Med. High Low Low Low
TOPS/mm2 NA 33.13 NA NA NA 170 20.2 0.6 27.3 NA NA 5.461 NA
TOPS/W NA 30.49–

55.8
1/1/5b1

41.4
1/1/1b1

NA NA 1002
1/1/1b1

671.5
1/1/5b1

192–
400
1–8b

0.56/5.27
Arbitrary

6.02
8/1/
11b1

66.7
1/1/1b1

403
1/1/
3.46b1

7.2–61.1
2,4,8/4,
8/10,12,
16,20b1

1Input precesion/Weight precesion/Output precesion. TWT-MC: Two-way transpose multibit accumulation; DDC: deeply depleted channel;
FDSOI: full depleted silicon on insulator

Journal of Semiconductors    doi: 10.1088/1674-4926/43/3/031401 5

 

 
Z T Lin et al.: A review on SRAM-based computing in-memory: Circuits, functions, and applications

 



that is,  a  stepwise comparison is  performed through multiple
operation stages to quantify the analog voltage of the RBL.

The  quantifying  circuits  process  the  final  calculation
result,  which is  especially important for the calculation accur-
acy  of  the  entire  system.  Most  researchers  choose  flash
ADC[14, 37, 38, 55] or successive approximation ADC[44, 51, 52, 60, 63]

to  quantify  the  BL  voltage.  Flash  ADCs  usually  require  mul-
tiple  comparators  and  reference  voltages;  thus,  under  the
same  bit-accuracy,  the  area  and  power  consumption  of  flash
ADC is relatively larger than SAR ADC. Sometimes a high-accur-
acy  flash  ADC  may  be  larger  than  the  whole  array.  SAR  ADC
only needs one comparator to complete the quantization oper-
ation. However,  it  needs multiple cycles for comparison. Con-
sequently, its speed is far lower than that of flash ADC. To se-
lect  the  type  of  ADC  in  CIM,  the  tradeoff  between  quantiza-
tion  accuracy  and  the  overhead  of  area  power  consumption
is  considered  first.  For  example,  the  C3SRAM  used  flash  ADC
with  multiple  comparators  and  voltage  references  achieving
a  relatively  high  1638  GOPS  throughput[58].  The  ADC  con-
sumed 15.28% of the area and 22% power of the whole chip.
In this work, the 256-row can be activated for dot-product cal-
culation;  thus,  the  full  resolution  of  partial  convolution  res-
ults  was  8-bit.  However,  considering  the  area,  power,  and
latency,  a  lower  flash  ADC  was  used  with  5-bit  accuracy
design that was still able to maintain the final accuracy. In con-
trast,  the  authors  in  Ref.  [57]  used  SAR  ADC  achieving  a
throughput  of  8.5  GOPS,  which  consumed  43.1%  of  the  area
and  24.1%  of  the  power  of  the  entire  chip.  From  the  presen-

ted  data,  this  SAR  ADC  seems  to  have  larger  area  and  power
than  the  above-mentioned  flash  ADC.  However,  in  this  work,
it had 8-bit accuracy to increase the inference accuracy. To re-
duce  the  interference  of  PVT,  the  SRAM-based  CIM  architec-
ture needs to be integrated with ADC. Therefore, it is signific-
antly important for the design of ADC in CIM works. 

3.1.2.    Weighting BL voltage circuits
One  of  the  weighting  BL  voltage  circuits  is  the  capacitor

array  weighting  circuits.  It  has  a  higher  linearity,  which  is  of-
ten used when high-precision operations are required. Capacit-
or  array  weighting  techniques  are  broadly  grouped  into  two
categories:



Δv 


Δv 


Δv



Δv

1)  Weighting by different  capacitor  sizes[37, 38],  where the
voltage  of  the  RBL  decreases  by  Δv after  calculation  and  is
shared by the capacitors connected to each column. The cor-
responding N3 on RBL[3]  is ,  N2 is ,  N1 is ,  and N0
is ,  which  is  achieved  by  different  capacitor  sizes,  as
shown in Fig. 8(a). Finally, the weighted shared charge is trans-
mitted to an ADC composed of the SA.

2) Weighting by sharing charge across multiperiod opera-
tions,  as  shown  in Fig.  8(b).  In  Ref.  [64],  the  parasitic  capacit-
ance on the BL was the same as that of  C_DIV in the capacit-
or array, so that the charge was shared equally among the ca-
pacitors.  When  1/8  weighting  was  required,  in  the  first  peri-
od, the BL was connected to port 2 achieving the charge shar-
ing  with  three  C_DIVs.  Thus,  the  voltage  decreased  to  1/4.  In
the  second  period,  the  BL  was  connected  to  port  1,  and  the

 

Vref [7]

Vref [6]

Vref [5:4]

Vref [3:0]

Vref [14:11]

RBL[3]

SA[14:11]

Vref [10:9]

RBL[2]

SA[10:9]

Vref [8]

RBL[1]

SA[8]

RBL[0]

SA[7]

RBL[1]

SA[6]

RBL[2]

SA[5:4]

RBL[3]

SA[3:0]

(b)

SA

SA

SA

SA

SA

SA

SA

(a)

SAE

SAOUT SAOUTB

BL
BLB

MBLB

SAE

MBL

Asymmetric Differential 

SA

(c)

16Co 8Co 4Co Co 3Co

VCM

K0K1K2K3
S1

VDD

SUM

16Co 8Co 4Co 2Co 2Co

VCM

D1D2D3D4 S2

VDD

REF

SA
X(-16) X(-8) X(+4) X(+1)

VRRBL (form CRC)

W
ei

g
h

t 
P

ro
c
es

so
r

SC/2CA MUX SC/2CA Logic SC/2CA Logic

WPINSC WPIN2SC WPIN[1] WPIN[0]

5 bit outputs 

(pre cycle)

RBLS RBLO[1] RBLE[1] RBLO[0] RBLE[0]

M
o

d
e 

S
e
le

c
to

r
L

o
ca

l 
R

ef
e
re

n
c
e 

G
e
n
e
ra

to
r

SC/2CA Logic

SBQ

SODD SEVEN

RBLO RBLE

MAC

 

Fig. 7. (Color online) (a) Asymmetric differential sense amplifier (SA), (b) flash ADC, and (c) successive approximation ADC.

 

VDD

VDD

C_DIV

Port 1 Port 2
SW_DISPREC

HARGE1

SW_DISPREC

HARGE2

Division capacitors

(b)

Multi period weighting technique

C_DIV C_DIV C_DIV

Division module
ADC

S0 S0

S0 S0

S0

S0

S0

S0

1*Cu 5*Cu 7*Cu 8*Cu

8*Cu 4*Cu 2*Cu 1*Cu

S1 S1 S1 S1
SH SH SH SH

N3 N2 N1 N0

RBL[3] RBL[2] RBL[1] RBL[0]

(a)

Compensation 

Caps 

Computation 

Caps 

Capacitor sizes weighting technique

 

Fig. 8. (Color online) (a) Weighted array with different capacitor sizes and (b) multi-period weighting technique using capacitors of the same size.

6 Journal of Semiconductors    doi: 10.1088/1674-4926/43/3/031401

 

 
Z T Lin et al.: A review on SRAM-based computing in-memory: Circuits, functions, and applications

 



shared  charge  was  divided  equally.  Therefore,  the  original
charge was ultimately divided into 1/8 of the original  charge.
Charge  can  be  shared  in  multiperiod  operations  in  a  similar
manner to achieve other weights.

The two types of weighting techniques have their demer-
its.  In  the first  technique,  the capacitance increases exponen-
tially  with the number of  input  bits,  which increases  the area
overhead exponentially. However, in that work its unit of com-
putation  capacitance  is  formed  by  the  inherent  cap  of  the
sense  amplifier  (SA)  inside  the  4-bit  Flash  ADC,  which  saves
area  and  minimizes  the  kick-back  effect.  Moreover,  it  is  diffi-
cult  to  realize  in  the  manufacturing  process.  In  the  second
technique,  the capacitance of  the circuit  remains unchanged.
However,  multiple  operation  periods  are  required  to  com-
plete  the  weighting,  which  decreases  the  computation
speed.  In  general,  whether  it  is  the equivalent  capacitance of
SA,  MOMCAP  or  MOSCAP,  if  there  has  a  large  capacitance  in
the  CIM  system,  the  robustness  of  the  operations  will  have  a
certain impact. 

3.2.  Digital-to-analog (DAC) conversion circuit

The  purpose  of  the  DAC  circuit  is  to  convert  a  digital  in-
put into the corresponding analog quantity as the pulse wid-

th or pulse height.  The BL voltage can be decreased or incre-
ased  proportionately  by  controlling  the  pulse  width  or  pulse
height  in  proportion to  the digital  input.  The precise  genera-
tion  of  these  widths  or  heights  is  crucial  to  multibit  calcula-
tion.

For  example,  for  an  input  of  6  bits,  the  circuit  design  re-
quires  64 different  pulse widths.  Generating such a  variety  of
pulse widths in the memory consumes an immense area and
power. Therefore, the solution to this problem requires a delic-
ate  circuit.  Biswas et  al.[10] proposed  a  global  read  bitline
(GBL)  DAC  circuit  consisting  of  a  cascade  PMOS  stack  biased
in  the  saturation  region  to  act  as  a  constant  current  source
(Fig.  9(a))  and  a  two-level  data  selector  (Fig.  9(b)).  The  circuit
controls  the  opening  time  of  the  transmission  gates  accord-
ing to the input data so that the bitline is charged to the cor-
responding  voltage  value.  With  the  traditional  scheme,  it  re-
quired 64 types of  signals and 64 :  1 MUX if  the input is  6-bit
(XIN [5:0]). However, in Ref. [10], a two-level data selector was
proposed to solve the problem. The first  level  had three 2 :  1
MUX, and the second level  an 8 :  1  MUX. The first  stage TS56
chooses  XIN  [5:3]  as  the  input,  and  the  second  stage  XIN
[2:0].  The  two  stages  have  pulse  widths  of  56t0  and  7t0,  re-

 

ON

ON

Vbiasp

VDD,DAC

MP1

MP2

MN

RST
GRBL

Analog Output:Va

(GRBL Pre-charge  Voltage)

8
:1

 M
U

X

7

0

2:1 MUX

1 0
XIN[5:3] XIN[2:0]

Digital Inputs

TS56

TS36

TS54

TS45

TS0

TS9

TS18

TS27

TS63

Global

Timing

Signals

ON

3 SEL[2:0]

x3

RST

ON

GRBL

TS63

TS54

TS45

TS36

TS27

TS18

TS9

TS0

TS56

Phase A Phase B

1V

0

XIN=63

XIN=24

63t0

54t0

45t0

36t0

27t0

18t0

9t0

56t0

Select signal
7t0

(a)

(b) (c)

Two-stage 

MUX

Constant current source

VΔ
2 VΔ

4 VΔ

8 VΔ

WL

WL

VBIS,O

Xoffset

VBIS
1X 2X

X[0] X[1]

16X

X[4]

MA,R

IADC

MD,R

CLASS_EN

WL_RESET

WL

BL BLB

MA

MD

IBC=1/R x IDAC

Binary weighted current source

B
it

-c
e
ll

 r
e
p

li
c
a

 

(u
p

si
z
e
d

 b
y

 R
)

(d)

WL

WL

 

Fig. 9. (Color online) Schematic of the column-wise GBL_DAC circuit: (a) Circuit of the constant current source, (b) two-stage MUX, and (c) wave-
form of the column-wise GBL_DAC circuit. (d) Schematic and waveform of the pulse height modulation circuit.

Journal of Semiconductors    doi: 10.1088/1674-4926/43/3/031401 7

 

 
Z T Lin et al.: A review on SRAM-based computing in-memory: Circuits, functions, and applications

 



spectively. Finally, 64 proportional time-series signals are gen-
erated by combining eight different widths of the 8 : 1 MUX in-
put.  The operation waveform is  illustrated in Fig.  9(c).  The 64
different pulse widths can act on the charging time of the BL
through  the  constant  current  source  such  that  the  BL  has  64
types  of  precharging  voltage  corresponding  to  the  input.  Fi-
nally, this circuit can achieve up to six bits of DAC input.

As shown in Fig. 9(d), the DAC circuit, used for pulse heig-
ht  modulation,  is  composed  of  a  binary  weight  current  sour-
ce and a copy unit[15, 16]. In a current source circuit, a fixed vol-
tage VBIS is  applied  to  the  gate  of  transistors  with  different
width-length  ratios.  It  produces  different  proportions  of  cur-
rent  according  to  the  input  data  and  then  passes  it  through
the  diode-connected  MA,  R,  generating  a  weighted  voltage  at
the  WL  to  realize  BL  discharge  proportionally.  Similarly,
Ref.  [65]  used  a  current-type  DAC  to  realize  different  pulse
heights and applied it to the BL, thereby realizing multibit in-
put.

The DAC precisely  controls  the proportional  discharge of
transistors. However, the transistor itself is a nonlinear device,
so  the  discharge  rate  cannot  be  controlled  proportionally.
Thus, both techniques encounter the problem of nonlinear cal-
culation  results.  Solving  this  is  particularly  important  for  the
SRAM-based CIM. 

3.3.  Redundant reference column circuit

The in-memory Boolean logic, CAM operation, and MAC re-
quire  multiple  reference  voltages.  In  practice,  multiple  refer-
ence  voltages  cannot  be  simultaneously  connected  due  to
the  limited  external  pins  of  the  chip.  To  address  this,  mul-
tiple  reference  voltages  must  be  implemented  in  an  array.  A
common  technique  for  generating  the  required  reference
voltages in an array is by the redundant reference column cir-
cuit.

As shown in the orange rectangle in Fig. 10[5],  the BL and
BLB of the redundant reference column are shorted together.
Therefore,  the  parasitic  capacitance  of  the  redundant  refer-
ence  column  is  twice  that  of  the  main  array.  The  BL  voltage
of  the  redundant  reference  column  is  reduced  by  half  relat-
ive  to  the  BL  voltage  of  the  main  array,  generating  the  de-
sired  reference  voltage.  The  redundant  column  with  buffers
generates  the  required  reference  voltages,  as  well  as  tracks
the  PVT  variations  in  the  memory  array,  thereby  increasing
the  sensing  margin.  Si et  al.[1, 2] proposed  a  dynamic  input-
aware reference generation scheme to generate an appropri-
ate reference for  the binary dot-product accumulation mode.
Two  redundant  columns  were  used  as  the  reference  column.
The BLs of  the reference columns were selectively  connected

through switches to generate different reference voltages. Gen-
erating  multiple  reference  voltages  in  a  memory  array  in-
creased the functionality and enhanced the accuracy of the en-
tire system. 

3.4.  Digital auxiliary computing circuit

Although  most  of  the  repeated  operation  functions  are
completed in the analog domain, the accumulation of the ana-
log  results  is  technically  difficult.  Digital  domain  accumula-
tion is a good choice, and digital auxiliary circuits can signific-
antly improve the computational accuracy of the system.

Fig.  11(a)  illustrates  a  digital-aided  technique  for  2-  and
3-bit multiplication. The Boolean logic “AND” and “NOR” func-
tions  are  realized  by  an  SA  sensing  the  voltage  of  column
CBL or  CBLB[12, 13].  Then,  the addition operation is  implemen-
ted  by  the  Boolean  logic.  Finally,  the  trigger  and  data  select-
or  are  used  to  accumulate  the  results  of  the  addition  opera-
tion to execute multiplication.

The digital circuit not only assists in the execution of multi-
plication  but  also  the  MAC,  as  shown  in Fig.  11(b)[22, 31, 58].
The  bit-tree  adder  is  used  to  obtain  the  cumulative  sum  of
the  BL  quantization  results.  For  an  array  with N numbers  to
be  accumulated,  a  log(N)-layer  full  adder  is  required  to  per-
form population count.

Digital calculations are highly precise. However, this meth-
od requires multiple cycles and has a relatively large area over-
head and power consumption.  The efficient use of digital  cir-
cuits is a research direction in in-memory computing. 

3.5.  Analog auxiliary computing circuit

The  analog  domain  auxiliary  circuit  has  a  lower  calcula-
tion  accuracy  than  its  digital  counterpart;  however,  it  can
achieve  a  higher  computing  ability  with  limited  area  and  en-
ergy  consumption.  Kang et al.[35, 36, 45, 50, 66] proposed  a
signed  multiplier  in  the  analog  domain.  The  timing  diagram
is illustrated in Fig. 12(a), and a schematic of the same is depic-
ted  in Fig.  12(b).  First,  the  analog  voltage  corresponding  to
the  8-bit  weighted  data  are  shared  with  five  capacitors  of
equal  size  through ϕdump connected  to  the  multiplier.  Then,
ϕ2,0–ϕ2,3 is activated by a 4-bit digital input XLSB. If the corres-
ponding input data is  0,  it  is  deactivated; otherwise,  it  will  be
activated.  Finally, ϕ3,0–ϕ3,3 is,  in  turn,  activated  to  redistribute
the charge,  and the final  voltage is  proportional to the multi-
plication of the input XLSB and weight. The 8-bit input is real-
ized  through  two  operation  cycles,  and  one  cycle  processes
4-bit  data.  The  array  is  not  used  to  complete  the  multiplica-
tion;  hence,  it  does  not  require  reconstruction,  preserving  its
storage density and robustness. 

4.  Computational functions of the SRAM-based
CIM

Because the internal cells of an SRAM array are repetitive,
the operation in memory must be simple and repeatable. The
existing SRAM-based CIM can be classified into two: pure digit-
al  CIM  and  mixed-signal  CIM.  The  pure  digital  CIM  mainly  in-
cludes  Boolean  operation  and  CAM,  and  the  mixed-signal
CIM the processing of the Hamming distance, MAC, and SAD. 

4.1.  Digital SRAM-based CIM
 

4.1.1.    Boolean logic (AND, OR, NAND, NOR, XNOR, XOR,

and IMP)
Implementing  the  Boolean  logic  in  memory  is  relatively

 

8T 8T8T

8T 8T8T

8T 8T8T

8T 8T8T

8T 8T8T

10T

10T

10T

10T

10T

Sense Amplifier VREF1

VREF2

8T

SRAM

ARRAY

Precharge

re
d

oce
D

w
o

R

R
W

L
v
re

f

gnd

RWLvref

gnd

VREF1VREF2

R
ed

u
n

d
a
n

t 
co

lu
m

n

RBLBLBLB RBLB

Fig. 10. (Color online) Redundant reference column technology.

8 Journal of Semiconductors    doi: 10.1088/1674-4926/43/3/031401

 

 
Z T Lin et al.: A review on SRAM-based computing in-memory: Circuits, functions, and applications

 



simple  and  accurate  because  its  operation  is  completed  in
the  digital  domain. Fig.  13(a)  illustrates  a  basic  construct
for  performing  in-place  bitwise  logical  operations  using
SRAM[19, 20, 22, 24].  To  realize  the  logic  operations  of  A  and  B,
the  BL  and  BLB  are  first  precharged  to  VDD.  Then,  the  WL  of
the  corresponding cell  is  turned on,  and the  two BLs  are  dis-
charged  according  to  the  data  stored.  If  AB  =  11,  BL  will  not
discharge; if  AB = 01/10, BL will  discharge to a certain level; if
AB  =  00,  BL  will  discharge  to  the  maximum,  as  shown  in Fig.
13(b).  The  SA  can  realize  different  logic  functions,  such  as
AND and NOR, by setting different VREF values. Finally, XNOR
can  be  realized  by  combining  ‘AND’  and  ‘NOR’  through  the
OR gate to implement the full  Boolean logic. Fig.  13(c) shows
the  implication  logic  (IMP)  and  XOR  logic[18].  In  the  CIM
mode, SL1 is connected to the VDD supply, while SL2 is groun-
ded,  forming  a  voltage  divider.  RWL1  and  RWL2  are  initially
grounded,  and  RDBL  is  precharged  to  Vpre  (at  400  mV).  The
voltages  of  RWL1/  RWL2  represent  the  input  data.  If  Q1  and
Q2  store  data  ‘1’  and  the  input  is  ‘00/11’  (RWL1  =  0,  RWL2  =
0; RWL1 = 1, RWL2 = 1), RDBL remains Vpre; if the input is ‘01’
(RWL1 = 0, RWL2 = 1), RDBL discharges to ground; and if the in-
put  is  ‘10’  (RWL1  =  1,  RWL2  =  0),  RDBL  charges  to  VDD.  Fi-
nally,  the  results  of  IMP  and  XOR  can  be  realized  by  using
two skewed inverters to sense the RDBL voltage.

Most of  the existing Boolean logics are realized by open-
ing  two  rows  of  cells  and  sensing  the  BL  voltage  by  setting
the SA reference voltage[5, 7, 21, 23−27]. Implementing multiple in-
put logic operations in a single cycle and XNOR without addi-
tional  combinational  logic  gates  is  challenging.  Surana et  al.
proposed a  12T dual  port  dual  interlocked storage cell  SRAM
to  implement  the  essential  Boolean  logic  in  a  single  cycle[23].
Lin et  al.  leveraged the three types  of  BLs  of  a  traditional  8T-
SRAM  to  simultaneously  realize  four  input  logic  operations[5].
Zhang et  al.  proposed an 8T-SRAM with dual  complementary
access transistors[64].  It utilizes the threshold voltage of NMOS
and  PMOS,  precharges  the  BL  voltage  to  0.5  VDD,  and  finally
configures different  reference voltages to realize the Boolean
logic.  In  addition,  a  composite  logic  operation  can  be  real-
ized without additional combinational logic. The existing meth-
ods  add  additional  cycles  to  store  results  in  other  cells[18];
however, it decreases the speed and storage density of the sys-
tem. The future direction of in-memory Boolean logic is to ef-
fectively store the calculated results. 

4.1.2.    Content addressable memory (CAM)
The CAM is a special type of memory that can automatic-

ally  compare  input  data  with  all  the  data  stored  in  the  array
simultaneously to determine whether the input data matches
the data in  the array.  The realization of  CAM in SRAM can re-

 

SA

DR

SA

DR

C

DQ

EN

T

EN

Q D

AB

A+B

+A   B

Sum

Latch_EN

Cin

Cout

Cout

T

AB/A+B/A  B+

SAE

CBL

CBLB

Near-Memory Part

Latch_ENWENVREF

(a)

XNORed vector(from SAs)

Popcount

+ + +Layer 1

+Layer 2

+Layer log (N)

Bit-Tree 

Adder

(b)

 

Fig. 11. (Color online) (a) In-/near-memory computing peripherals and (b) a bit-tree adder.

 

X0 X1 X2 X30

P1 P2 P3

P4

ϕdump
XLSB

ϕ2,X

(a)

ϕ2,0
ϕ2,1
ϕ2,2
ϕ2,3
ϕ3,0
ϕ3,1
ϕ3,2
ϕ3,3
ϕrail

C2

C1

C0

CX

Vpre

Vpre

Vpre

Vpre

Vpre

DEMUX

Vp Vn

LSB negative rail

LSB positive rail

X
L

S
B

Sign(W)

MVΔ

MUXBLVΔ
ϕdump

ϕ2,X

(b)

ϕ2,0

ϕ2,1

ϕ2,2

ϕ2,3

ϕ3,0

ϕ3,1

ϕ3,2

ϕ3,3

ϕrail

 

Fig. 12. (Color online) Signed 4-b × 8-b least significant bit (LSB) multiplier: (a) timing diagram and (b) circuit schematic.

Journal of Semiconductors    doi: 10.1088/1674-4926/43/3/031401 9

 

 
Z T Lin et al.: A review on SRAM-based computing in-memory: Circuits, functions, and applications

 



duce  data  transmission  and  avoid  a  large  amount  of  energy
consumption.  The  CAM  operation  can  be  divided  into  binary
CAM  (BCAM)  and  fault-tolerant  ternary  CAM  (TCAM).  In  addi-
tion,  there  are  two  different  search  modes,  including  row-
wise  search  and  column-wise  search.  The  row-wise  search  is
defined as the cases where the input searching data are repres-
ented by lines connected by rows.  Similarly,  the column-wise
search is defined as the cases where the input searching data
are  represented  by  lines  connected  by  columns.  In Figs.  14,

(a) and (b) are the column-wise BCAM operations, and (c) and
(d)  are  the  row-wise  TCAM  operations.  Srinivasa et  al.[6] used
the  array  structure  shown  in Fig.  14(a)  to  execute  a  column-
wise  BCAM  operation.  In  the  CAM  operation,  the  data  to  be
searched are stored in an array, and the search data are repres-
ented  by  the  voltage  values  of  the  source  line  (Sl)  and  Slb.  If
the  data  to  be  searched  matches  the  search  data,  the  pre-
charged  match  line  is  considered  not-discharged  and  vice
versa. To save area during CAM operations, Dong et al.[20] pro-

 

BL
V

BL
V

A AND B A NOR B

VREF
VREF

WL

WL

A 

B B

A 

VBL

00 01 10 11

AND operation

VREF

Bit combinations

00 01 10 11

NOR operation

VREF

Bit combinations

VBLB

SA SA

BL BLB

(a) (b)

Cell1

Cell2

IMP and XOR operation

M1

M4

M2

M3

VDD
SL1

SL2

INV1 INV3

INV2

10

01

RWL1 RDBL

Q1

Q2

RWL2

Q1

Q2

RWL1

RWL2

M1

M2

M4

M3

VDD

(c)

RDBL

 

Fig. 13. (Color online) Boolean operation: (a) Boolean logical operations using an SRAM array, (b) histogram of AND and NOR operation voltages,
and (c) schematic of the 8T-SRAM for implementing the IMP and XOR operations.

 

Keeping High

Discharging

S
A

S
A

+
-

+
-

Vref

1

（Match）

0

(Mismatch)

0 1

0 1

1 0

0 1

0 01 1
Search Data Input

(b)

(c)

r
e

vi
r

D
L

W
R

/
1

0
0

1
t

u
p

nI
at

a
D

h
cr

a
e

S

CWL Driver

SA SA SA SA SA SA SA SA

1
0

0
1

0
1

1
0

1 0

1 0 1 0 1 0 1

1 0

1 0

10

10 1 0 1

0 1 0 1

01 1

1

1 0

Match

0

Vref

Column 1 Column 2 Column 3

SLB2

SLB3

SLB4

ML1 ML2 ML2＇ ML3 ML3＇ ML4 ML4＇

SLB1

SL1

ML1＇
SL4

SL2

SL3

Mismatch

1

1

1

0

0

0

0

Column 4

1 0 1 0 1 0 1 0

1 0 1 0 1 0 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

VREF SA SA SA SA SA SA SA SA

S_1

S
e
a
rc

h
 d

ri
v
er

BLB_1 BL_1 BLB_2 BL_2 BLB_3 BL_3 BLB_4 BL_4

(d)

S_4

S_3

S_2

Vdd

p
r
e

Match

B
L

<
4
>

B
L

B
<

4
>

B
L

<
0
>

B
L

B
<

0
>

Wr<0>

(a)

3D-CAM

Slb Sl

T1

Q QB

Slb Sl

T1

Q QB

 

Fig. 14. (Color online) Column-wise BCAM: (a) search example in 3D-CAM and (b) 4+2T. Row-wise TCAM: (c) organization based on 10T and (d) or-
ganization based on 6T.

10 Journal of Semiconductors    doi: 10.1088/1674-4926/43/3/031401

 

 
Z T Lin et al.: A review on SRAM-based computing in-memory: Circuits, functions, and applications

 



posed  a  4  +  2TSRAM.  The  data  to  be  searched  is  also  stored
in  an  array,  and  the  search  data  is  represented  by  the  BL
voltage.  The  SA  is  used  to  capture  the  voltage  value  of  the
matching line to obtain the result,  as shown in Fig.  14(b).  Be-
cause  the  two  studies  represent  the  search  data  by  the  BL
voltage, all the memory units are column-wise addressable.

The  difference  between  TCAM  and  BCAM  is  that  the
former  has  a  do-not-care  state.  Two  cells  are  used  to  repres-
ent  one  data  point  owing  to  the  presence  of  three  states  in
the  TCAM.  The  three  states,  0/1/X  (where  X  is  an  independ-
ent state, a do-not-care state), are represented by 00/11/01, re-
spectively,  whose  implementation  for  column-wise  search  is
shown  in Fig.  14(c).  The  data  to  be  searched  is  represented
by  two  adjacent  cells  in  a  row,  and  the  search  data  by  the
SL/SLB  voltage.  The  intermediate  ML1’/ML2  of  two  adjacent
columns are  shielded,  and the  matching result  is  determined
by whether  the other  two MLs are discharged[11].  In  addition,
to  match  the  characteristics  of  the  data  stored  in  rows  in  an
SRAM,  this  work  used  10T-SRAM  to  simultaneously  imple-
ment  CAM  in  the  row  and  column  dimensions.  In  order  to
save area,  Jeloka et  al.  used standard 6T cell  achieving TCAM
operations,  as  shown  in Fig.  14(d)[19],  where  the  search  data
are  represented  by  WLs  voltage  and  the  nodes  in  two  adja-
cent  cells  in  a  row represent  the searched data.  Similarly,  the
search  results  are  obtained  by  SA  sensing  the  BLs  voltage.
However,  unlike  Refs.  [11, 19],  Ref.  [29]  used  the  virtual
ground  wire  technique  as  the  sensing  mechanism.  The  virtu-
al  and  actual  grounds  are  connected  via  a  diode,  and  the  SA
detects  the voltage of  the virtual  ground,  obtaining the tern-
ary addressing result.

Lin et  al.[5] and Chen et  al.[28] utilized the 8T unit  to com-
plete the CAM operation. The difference between the two stud-
ies  is  that  the  former  used  the  BL  as  the  data  search  line,
whereas the latter used the WL. Ref. [67] used the CAM auxili-
ary  circuit  techniques  to  improve  the  operational  speed  of
the system under ultra-low voltage. In Ref. [68], the CAM func-
tion was realized by combining two 6T cells with two addition-
al control transistors.

In Table  2,  the  performances  of  several  CIM  Boolean  lo-

gics  and  CAM  are  compared  and  the  different  search  modes
are presented.  Most studies have implemented both Boolean
operations  and  CAM  by  modifying  standard  cells,  indicating
the  compatibility  of  these  two  functions.  However,  few  have
achieved CAM function in two directions simultaneously. Cur-
rently,  in-memory  Boolean  logic  is  realized  at  the  cost  of  re-
duced parallelism as opposed to its analog counterpart. There-
fore,  improving the parallelism for  Boolean logic  and using it
to achieve sophisticated calculations in memory will be a direc-
tion for research. 

4.2.  Mixed-signal SRAM-based CIM

The  mixed-signal  SRAM-based  CIM  is  primarily  categor-
ized  into  two  types:  1)  single-bit  operation,  including  binary
and ternary dot products, and Hamming distance, and 2) mult-
ibit operation, including multibit multiplication and SAD. 

4.2.1.    Single-bit operation0
A. Binary dot product
The  multiplication  operation  of  a  single  bit  is  also  a  dot-

product  operation.  As  mentioned  previously,  there  are  two
subtypes  of  this  operation:  binary  and  ternary  dot  products.
Chiu et  al.  executed  (1,0)  ×  (1,0)  and  (1,0)  ×  (+1,  -1)  dot-
product operations with standard 6T cells[33]. The input is rep-
resented by the WL voltage.  The weight is  represented by 6T
storage data. The truth table is used to summarize the combin-
ations of  different  inputs  and weights,  as  shown in Fig.  15(a).
The  binary  dot  product  results  are  represented  by  the
voltage  difference  between  BL  and  BLB.  The  BL  voltage
changes according to the result of the multiplication of the in-
put  and  weight.  Sun et  al.  proposed  a  dedicated  8T-SRAM
cell  for  the  parallel  computing  of  a  binary  dot  product[30, 69]

(Fig.  15(b)).  There  are  two  complementary  WLs  (i.e.,  WL  and
WLB) and two pairs  of  pass  gates (PGs)  to achieve the opera-
tion function. The first pair of PGs is controlled by the WL and
connects  Q  and  QB  to  BLB  and  BL,  respectively,  while  the
second pair  of  PGs  is  controlled  by  WLB and connects  Q and
QB  to  BL  and  BLB,  respectively.  The  proposed  8T-SRAM  al-
ways contains  a  non-zero voltage difference between BL and
BLB,  which  represents  the  results  of  the  binary-weight  multi-

Table 2.   Summary of chip parameters and performance of in-memory Boolean logic and CAM

Parameter Ref. [19] Ref. [28] Ref. [20] Ref. [29] Ref. [5] Ref. [68] Ref. [11]

Technology 28-nm FDSOI 180 nm 55-nm DDC 28-nm FDSOI 65 nm 28 nm 28 nm
Cell type 6T 8T 4+2T 6T 8T 14T 10T
Array size 64×64 8×8 128×128 128×64 128×128 1024×320 64×64
Supply voltage (V) 1 1.2 0.8 0.9 1.2 0.9 0.9

CAM

Freq.
(MHz) 370 (1 V) NA 270 (0.8 V) 1560 (0.9 V)

8.90 (0.38 V) 813 (1.2 V) 1330 (0.9 V) 262
(0.9 V)

256
(0.9 V)

Energy
(fJ/bit) 0.6 (1 V) NA 0.45 (0.8 V) 0.13 (0.9 V) 0.85 (1.2 V) 0.422 (0.9 V)

1.025
(0.9 V)

1.02
(0.9 V)

0.635
(0.7 V)

0.632
(0.7 V)

Logic

Freq.
(MHz) NA NA 230 (0.8 V) NA 793 (1.2 V) NA ~300(0.9 V)

Energy
(fJ/bit) NA NA 24.1 (0.8 V) NA

~31 (1.2 V) NA ~15 (0.9 V)
~22.5 (1 V) ~12.5 (0.8 V)
16.6 (0.8 V) ~10.5 (0.7 V)

Search mode 1 1 2 2 1 2 1 2

Function
SRAM/
CAM/Logic

SRAM/ TCAM/
Left Shift/
Right/Shift

SRAM/
CAM/Logic

BCAM/SRAM/
Pseudo-TCAM

SRAM/ CAM/
Logic

SRAM/ TCAM SRAM/CAM/
Logic/Matrix
transpose

1Row-wise search. 2Column-wise search. DDC, deeply depleted channel; FDSOI, full depleted silicon on insulator.

Journal of Semiconductors    doi: 10.1088/1674-4926/43/3/031401 11

 

 
Z T Lin et al.: A review on SRAM-based computing in-memory: Circuits, functions, and applications

 



plication  operations.  The  truth  table  in Fig.  15(b)  reveals  the
combination  of  different  inputs  and  weights,  and  the  corres-
ponding changes in the BL discharge current (Δi) and voltage
(Δv)  caused.  In  addition,  according  to  the  input  neuron  vec-
tor, a WL switch matrix is used to simultaneously activate mul-
tiple  WLs.  The  discharge  current  from  several  bitcells  in  the
same  column  decreases  the  voltage  of  the  BL  (BL  or  BLB).
Thus, the voltage difference between BL and BLB can be used
to determine the weighted sum.

The  cumulative  result  of  the  above  study  is  on  the  BL;
therefore,  the  operation  should  be  performed  by  columns.
However,  in  the  traditional  SRAM  storage  mode,  data  are
stored  row-wise.  The  CIM  mode  conflicts  with  the  storage
mode,  which  reduces  the  operation  efficiency.  To  address
this problem, Agrawal et al. used a 10T SRAM to perform a bin-
ary line dot product, and the results were reflected on the hori-
zontal source lines[9], conforming to the traditional SRAM stor-
age mode. However, the storage density is reduced by the in-

 

Input

XNOR

Strong

pull-up

Weak

pull-up

Strong

pull-down

Weak

pull-down

1 1 1 0 0

-1 0 0 1 1
0(even row) 0 1 0 1

0(odd row) 1 0 1 0

VDD

T7

0

T8

T9 T10

VDD

0 0

0

0

T7

0

T8

T9 T10

VDD

VDD VDD

0

VDD

T7

0

T8

T9 T10

VDD

0 VDD

VDD

0

T7

VDD

T8

T9 T10

VDD

VDD 0

0

RBL

Weight=-1

XNOR=-1

XNOR=+1

XNOR=0

XNOR=0

XNOR Value Mapping Table

RWL Driver Logic

Q QB

Q QB

Q QB

Q QB

VDD

T7

T9 T10

0

0 VDD

VDD

VDD

T7

VDD

T8

T9 T10

0

0 0

VDD

0

T7

VDD

T8

T9 T10

0

VDD 0

VDD

0

T7

0

T8

T9 T10

0

VDD VDD

VDD

RBL

Weight=+1

Input=+1

Input=-1

Input=0

(odd row)

XNOR=+1

XNOR=-1

XNOR=0

XNOR=0

0

T8

Input=0

(even row)

Q QB

Q QB

Q QB

Q QB

Input

WL Value Q QB Value BL BLB

0 0 0 1 0 0 0

0 1 1 0 0 0 0

1 0 1 0 0 IMC-D 0

1 1 0 1 1 0 IMC-D

Weight Binary Product

Input

WL Value Q QB Value BL BLB

0 -1 0 1 0 0 0

0 1 1 0 0 0 0

1 -1 0 1 -1 IMC-D 0

1 1 1 0 1 0 IMC-D

Weight Binary Product

Input

RWL
1 -1

0

(even row)

0

(odd row)
RWL_P VDD 0 0 VDD
RWL_N VDD 0 VDD 0

RWBL_P 0 VDD 0 VDD
RWLB_N 0 VDD VDD 0

Truth table of (1,0)x(1,0)

Truth table of (1,0)x(+1,-1)

Q QB

WL

WL=1, W=0

Q QB

WL

WL=1, W=1

(1,0)x(1,0) (1,0)x(+1,-1)

(a)

(b) (c)

Neuron Weight Multi iBL iBLB VBL VBLB

1 -1 -1 Δi 0 ΔV 0

-1 -1 1 0 Δi 0 ΔV

1 1 1 0 Δi 0 ΔV

-1 1 -1 Δi 0 ΔV 0

Truth table and BL situation

WL

QB

WLB WL

WLB

W:+1     Q/QB=1/0

W:-1     Q/QB=0/1

A:+1     

WL/WLB=1/0

A:-1     

WL/WLB=0/1

Q
IBL IBLB

BL BLB

ΔV
B

L
=

-Δ
V

P
S

ΔV
B

L
B
=

0

ΔV
B

L
=

0

ΔV
B

L
B
=

-Δ
V

P
S

IMC-D IMC-D

 

Fig. 15. (Color online) Schematic and truth table of the binary dot product: (a) 6T-SRAM binary dot product and (b) 8T-SRAM binary dot product.
(c) Ternary dot product: operation of ternary multiplication and XNOR value mapping table.

12 Journal of Semiconductors    doi: 10.1088/1674-4926/43/3/031401

 

 
Z T Lin et al.: A review on SRAM-based computing in-memory: Circuits, functions, and applications

 



troduction of additional transistors in the basic cell.
B. Ternary dot product
Yin et  al.  achieved  a  ternary  dot  product[17] (Fig.  15(c)).

For  the  XNOR  operation  if  the  result  is  +1,  PMOS  provides  a
strong pull-up, and NMOS a weak pull-up on the RBL. If the res-
ult  equals  –1,  then  NMOS  provides  a  strong  pull-down  and
PMOS a weak pull-down.  A resistor  divider  is  formed for  cells
on the same column, with the RBL as the output. The voltage
on  the  RBL  represents  the  accumulation  of  the  XNOR  results
in  that  column.  For  XNOR  with  ternary  activations  input  (+1,
0,  or  –1)  and  binary  weights,  an  additional  case  of  ‘0’  input
must  be  considered.  As  shown  in Fig.  15(c),  if  ‘0’  input  is  in
the  even  row,  the  PMOS  provides  a  weak  pull-down  and
NMOS  a  weak  pull-up  on  the  RBL.  If  ‘0’  input  is  in  the  odd
row, the PMOS provides a strong pull-up and NMOS a strong
pull-down  on  the  RBL.  Assuming  there  is  a  sufficiently  large
number  of  inputs,  half  of  the  inputs  will  be  in  the  even  row
and  the  other  half  in  the  odd  row.  Thus,  the  cumulative  in-
crease  and  decrease  in  the  RBL  voltage  are  0.  The  result  of
the  ternary  multiplication  is  summarized  in  the  truth  table  in
Fig. 15(c).

As  the  input  and  weight  of  the  dot-product  operation
are  in  single  bits,  no  additional  auxiliary  circuits  are  required
to  process  the  weight,  and the  quantization of  the  operation
results  is  simplified.  The  dot-product  operation  can  be  ap-
plied  to  the  binary  neural  network  (BNN)  algorithm,  where
the inputs  can be restricted to either  +1/–1 or  0/1.  When the
inputs  are  restricted to  0  or  1,  it  has  a  0.03% loss  of  accuracy
compared with +1/–1 input, which is tested in the MNIST data-
set[1].  However,  because  these  studies  used  the  analog
voltage of  BLs to reflect  the operation results,  they could not
obtain results that are as accurate as the digital CIM.

C. Hamming distance
The  Hamming  distance  algorithm  is  widely  used  in  sig-

nal  processing  and  pattern  recognition.  The  Hamming  dis-
tance between any two vectors of the same length is defined
as  the  number  of  corresponding  bits  with  different  values.
The  principle  of  Hamming  distance  is  that  two  bytes  of  the
same  length  are  bitwise  XNOR  and  these  XNOR  results  are
then  accumulated.  For  example,  the  Hamming  distance  from
1101  to  0111  is  2.  Because  this  algorithm  also  requires  high
data  access,  it  consumes  a  significant  amount  of  energy
when used in the traditional architecture.

Ali et  al.  proposed  a  9T  SRAM  to  calculate  the  Hamming
distance[8],  as  illustrated  in Fig.  16.  One  of  the  vectors  is

stored in the memory array,  while the other vector is  used to
drive the RBL/RBLB. For example,  if  the input vector is  ‘1’,  the
RBL is connected to VDD, and the RBLB to GND. If the data in
one cell match the input, SL is connected to VDD through M1, n.
If  it  mismatches  the  input,  the  SL  is  connected  to  GND
through  M2,  n.  Hence,  this  circuit  forms  a  voltage  divider  at
the  SL.  Finally,  the  results  of  the  Hamming  distance  accumu-
late on the SL.

Unlike  the  row-wise  Hamming  distance  operations,  Kang
et  al.  proposed  a  column-wise  Hamming-distance  macro
based  on  a  6T  SRAM  array[70].  In  this  design,  two  inputs  are
stored in two different rows in the same column. Then, the lo-
gic  operation between the two inputs  is  executed by the SA.
The  final  Hamming  distance  value  is  obtained  by  combining
and  accumulating  the  outputs  of  the  SA.  Because  the  result
of the study is represented by BLs connected by columns, the
Hamming distance is calculated column-wise.

In  CIM,  most  of  the  results  are  reflected  on  BLs  of
column-wise  connection.  Therefore,  vertical  data  storage  is
generally  required,  increasing  the  implementation  complex-
ity for the SRAM writing mode. For example, Jeloka et al. pro-
posed  a  strategy  of  column-wise  write[19].  It  writes  1  in  the
first  cycle  and  0  in  the  latter  cycle,  which  decreases  the  writ-
ten  data  throughput  and  writing  speed.  In  addition,  as  a  ba-
sic  and important  operation,  matrix  transposition is  generally
realized by data reading,  moving,  and writing back in a  com-
plicated operation with high power consumption. Thus, it will
be  a  research  direction  to  realize  Hamming  distance  opera-
tion in both the row and column directions. 

4.2.2.    Multibit operation
Unlike single-bit operations wherein the operands are lim-

ited to only 0,  –1, and 1,  multibit operations can obtain more
precise  in-memory  computations,  which  meets  the  require-
ments  of  various  AI  algorithms.  There  are  two  main  categor-
ies  of  multibit  operations:  1)  multibit  multiplication  and  2)
SAD.

A. Multibit multiplication
The  key  to  multibit  multiplication  is  the  weighting

strategy. The weighting strategies include pulse width[10, 35, 36,

39, 40, 45, 50, 56, 64, 66, 71],  pulse  height[10, 15, 16, 44, 56],  number  of
pulses[37, 38], width-to-length ratio of transistors[3, 32, 42, 43, 62], ca-
pacitor  array  weighting[37, 38, 62, 63, 72, 73],  and  precharge  time
weighting[44].  The specific  implementation strategy of  the ca-
pacitor  array  weighting  technology  is  introduced  in  Section
3.  The  multibit  multiplication  is  reviewed  from  the  following

 

‘1’ ‘0’

Cell-n

M1,n M2,n

‘1’‘0’

Cell-n-1

M1,n-1 M2,n-1

‘1’ ‘0’

Cell-1

M1,1 M2,1

‘1’‘0’

Cell-0

M1,0 M2,0

SL

RBLn

=1

RBLBn

=0

RBLBn-1

=0

RBL1

=1

RBL0

=1
RBLB0

=0
MX,n MX,n-1 MX,1 MX,0

Matched-bitMismatched-bit Matched-bitMismatched-bit

RBLn-1

=1

RBLB1

=0

 

Fig. 16. (Color online) Row of 9T SRAM cells for calculating the Hamming distance.

Journal of Semiconductors    doi: 10.1088/1674-4926/43/3/031401 13

 

 
Z T Lin et al.: A review on SRAM-based computing in-memory: Circuits, functions, and applications

 



five aspects:
1) Precharge time weighting
Fig.  17 illustrates  various  pulse-based  weighting  tech-

niques.  Ali et  al.[44] used  the  standard  6T  and  controlled  the
BL  precharge  time  to  achieve  multibit  multiplication  opera-
tions  (Fig.  17(a)).  In  Ali et  al.  study,  the  4-bit  weight  is  stored
within the adjacent 6T SRAM cells  in a  row.  The 4-bit  input is
reflected in the WL. When performing a 4-bit multiplication op-
eration, the pulse width of the WL is 8T and its amplitude is de-
pendent on the input. The closing times of the precharge cir-
cuit  from  the  first  to  last  columns  are  [0,  8T+Tch-sh],  [4T,
8T+Tch-sh], [6T, 8T+Tch-sh], and [7T, 8T+Tch-sh], respectively,
where  Tch-sh  is  the  merging  period.  Because  the  opening
time  of  the  WL  is  8T,  the  discharge  times  of  the  BL  from  the
first  to  last  columns  are  approximately  8T,  4T,  2T,  and  T,  re-

spectively.
2) Pulse-width-weighting
During the SRAM read operation,  when the BL voltage is

maintained within a certain range, its discharge voltage is pro-
portional  to  the  WL turn-on time;  that  is,  the  decrease  of  the
BL voltage can be controlled by controlling the opening time
of the WL.  Therefore,  by doubling the opening width of  each
WL,  a  proportional  increase  in  the  BL  voltage  change  can  be
obtained. Sujan et al.[45, 66] proposed a functional read techno-
logy based on pulse-width modulation strategy for 4b weight-
ing  (Fig.  17(b)).  In  this  work,  the  turn-on  time  of  WL0-WL3
can be modulated to  8  :  4  :  2  :  1  to  execute the 4b-weighted
multiplication operation.

3) Pulse height weighting
As shown in Fig.  17(c),  different pulse heights can be ap-

 

W0,15
WL0

WL1

WL2

WL3

BL BLB

W0,14

W0,13

W0,12

W0,11

BLB

W0,10

W0,9

W0,8

W1,15

BLB

W1,14

W1,13

W1,12

W1,11

BLB

W1,10

W1,9

W1,8

d
a

e
R

l
a

n
oit

c
n

u
F

(b)

8T

4T

2T

1T

BL BL BL

WL0

WL1

WL2

WL3

Counter & 

WL Driver

Counter & 

WL Driver

Counter & 

WL Driver

8T

8T

8T

8T

8T

8T

8T

8T

8T

8T

8T

8T

8T

8T

8T

8T

R
B

L
[0

]

R
B

L
[1

]

R
B

L
[2

]

R
B

L
[3

]

RWL[62]

RWL[1]

RWL[0]

4-bit weight

00000 11111

00000 11111

00000 11111

00000 11111

(d)

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

(c) BLB0BL0BLB3BL3 BLB2BL2 BLB1BL1

WL[3]

WL[2]

WL[1]

WL[0]

WL[3]

WL[2]

WL[1]

WL[0]

VΔ

2 VΔ

4 VΔ

8 VΔ

BL/BLB3

BL/BLB2

BL/BLB1

BL/BLB0

Counter & 

WL Driver

Q QB Q QB

Vpre2

Q QB

Vpre1

Q QB

Vpre0

e
n

ch
-s

h

WL

t=0 t=8T

t=0 t=8T+Tch-sh t=4T t=8T+Tch-sh t=6T t=8T+Tch-sh t=7T t=8T+Tch-sh

e
n

ch
-s

h

e
n

ch
-s

h

e
n

ch
-s

h

t=8T t=8T+Tch-sh

t=8T
t=0 t=8T

t=4T t=6T

t=8T
t=7T

t=8T

Vch-sh
t=8T

(a)

Vpre7

RWL[63]

 

Fig. 17. (Color online) (a) Precharge weighting technology, (b) pulse width weighting, (c) pulse height weighting, and (d) pulse number weight-
ing.

14 Journal of Semiconductors    doi: 10.1088/1674-4926/43/3/031401

 

 
Z T Lin et al.: A review on SRAM-based computing in-memory: Circuits, functions, and applications

 



plied to the WL or BL. Zhang et al.[15, 16] used the WL ADC tech-
nology to implement a machine learning (ML) classifier. Differ-
ent  voltages  applied  to  the  WL  represent  different  weights,
and the access transistor is considered to have discharged ap-
proximately linearly according to the WL voltage, thereby real-
izing  multibit  multiplication.  Biswas et  al.[10, 56] realized  the
weighting  of  the  dot-product  sum  based  on  a  10T  SRAM  ar-
ray.  They  executed  the  multibit  multiplication  by  charging
the  BL  to  different  voltage  values  with  different  pulse
heights.

4) Weighting strategy based on the number of pulses
Dong et al.[37, 38] designed a 7-nm FinFET CIM chip for ML

that  uses  a  pulse  number  modulation  circuit  (Fig.  17(d)).  The
4-bit  input  is  represented  by  the  number  of  read  word-line
(RWL) pulses. These pulses are generated by a counter accord-
ing to the value of the input data and are applied to the RWL
to  turn  on  the  corresponding  cells.  The  discharge  amount  of
the  BL  is  proportional  to  the  number  of  times  the  RWL  is
turned on, thereby executing multibit multiplication.

5)  Weighting  strategy  based  on  the  transistor  width–
length ratio

As  depicted  in Fig.  18(a),  in  the  8T  array,  the  sizes  of  the
read access transistors in different columns are adjusted in pro-
portion to  the  weights  of  the  input  data[3].  The width–length
ratios  of  M1  and  M2  in  the  first,  second,  third,  and  fourth
columns are 8 (W/LM1,2 = 8) and 4 : 2 : 1, respectively. There-
fore,  the  sum  of  the  multiple  bits  multiplied  by  one  bit  can
be  obtained.  The  study  combines  the  BL  discharge  currents
of  the  four  columns  and  converts  the  current  value  into  a
voltage  value  through  an  operational  amplifier,  which  is  ulti-
mately  quantified  by  the  ADC.  Similarly,  Si et  al.  proposed  a
twin-8T structure based on the traditional  8T[32] and adjusted
the width–length ratio  of  one group of  reading transistors  to
twice  that  of  the  other  group  to  achieve  2b  input  weighting
(Fig.  18(b)).  Su et al.[43, 62] proposed a transposable arithmetic
cell  structure  and  quantified  its  internal  weighting  by  the
width–length  ratio  of  the  transistors,  achieving  simultaneous
bidirectional calculations.

Different designs have tradeoffs among time cost,  imple-
mentation  difficulty,  linearity,  area  cost,  and  process.  1)  Pre-

charge  time  weighting:  When  the  precharge  and  the  word
line  are  turned  on  simultaneously,  there  will  be  a  relatively
large  current  which  will  increase  power  consumption.  2)
Pulse-width-weighting:  Its  operation  is  relatively  simple.
However,  when  the  input  bits  increase,  the  corresponding
pulse  width  will  increase  proportionally;  thus,  the  time  in-
creases exponentially, resulting in a significant decrease in cal-
culation  speed.  Moreover,  when  the  bit  line  voltage  is  relat-
ively  low,  linearity  will  also  be  a  problem.  3)  Pulse  height
weighting: The V–I characteristic of metal–oxide–semiconduct-
or  (MOS)  devices  is  that  the  current  between  the  source  and
drain  increases  proportionally  to  the  square  of  the  gate
voltage.  Therefore,  unlike  2),  the  pulse  height  cannot  be  in-
creased  proportionally  to  ensure  proportional  discharge  of
the  bit  line,  so  it  is  difficult  to  set  the  pulse  height.  In  addi-
tion, the linearity is relatively poor compared with 2). 4) Pulse
number weighting: As this design controls the discharge num-
bers  of  the  access  transistor,  it  is  basically  consistent  with  2);
thus,  there  will  be  similar  problems.  5)  Weighting  based  /on
transistor  width–length  ratio:  The  proportional  discharge  of
bit line can be realized by adjusting the width–length ratio of
transistors.  However,  increasing  the  size  of  the  transistor  will
also  increase  the  area  overhead,  bring  difficulties  to  the  lay-
out process and cause mismatch due to the oversized array ra-
tio.  The  above  weighting  design  methods  are  all  a  tradeoff
between the octagonal rules of circuit design.

B. Sum of absolute difference (SAD)

∣D − P∣To  implement  the  SAD,  we  must  first  obtain  the  abso-
lute difference (AD),  defined by Eq. (1). 

∣D − P∣ = max(D − P, P − D)
= max(D + P + , P + D + )
⇒ max(D + P, P + D), (1)

D P
D P

where  and  are  1’s  complement  of D and P,  respectively.
Note:  and  are  available  because  of  the  complementary
nature of the SRAM bitcell.

Kang et  al.  executed  a  SAD  operation  based  on  a  6T
SRAM  array  without  sacrificing  storage  density[35, 50].  In  the
SAD,  the  template  pattern P is  stored  with  a  polarity  oppos-
ite to that of D. Both P and D are stored in four adjacent cells
in  a  column,  as  shown  in Fig.  19(a).  The  decimal  data  can  be
read  out  on  the  BL  through  multirow  read  technology  with
WL  pulse  modulation.  For  example,  if  the  data  stored  in  four
consecutive cells in a column are d = ‘1111’, the decimal num-
ber  is D =  15.  When  reading  the  data  with  four  weighted
pulse  WLs  (WL0–WL3),  the  BL  voltage  decreases  by  15Δv,  as
shown  in Fig.  19(b).  Because P and D are  stored  in  the  array
in  the  opposite  manner,  the  AD  operation  results  can  be  ob-
tained  by  comparing  the  voltages  of  the  two  BLs.  These  out-
puts  are  summed  via  a  capacitive  network  using  a  charge-
transfer mechanism to generate the SAD.

Table  3 summarizes  the  performances  of  existing  single
and multibit operations. The number of input and output bits
reflect  the  performance  of  the  operation.  However,  the  diffi-
culty lies  in improving the effective number of  bits  (ENOB) of
the  final  output  result  without  using  a  high  ENOB  ADC.  This
is  because  the  overhead  of  a  high  ENOB  ADC  is  unaccept-
able  as  it  deviates  from  the  original  intention  of  low-over-
head in-memory computing. 

 

M2
Q3

M1

M2
Q3

M1

M2
Q2

M1

M2
Q2

M1

M2
Q1

M1

M2
Q1

M1

M2
Q0

M1

M2
Q0

M1

RWL0

Vi0

Vi1

W/LM1,2=2 W/LM1,2=1

RBL RBL RBL RBL

IRBL IRBL IRBL IRBL

Iout

QB1Q1 QB2 Q2
PGM1 PGM2 PGL2 PGL1

Most significant 8T(M8T) Least significant 8T(L8T)

B
L

B
1

B
L

1

B
L

B
2

B
L

2

1X

RBL

WL

RWL

Read Port

VSS

N2_L

N1_L

2X

N1_M

VSS

N2_M

(a)

(b)

Sensing Cricuit

RWL1

W/LM1,2=4W/LM1,2=8

Fig.  18.  (Color  online)  (a)  8T-SRAM  memory  array  for  computing  dot
products with 4-bit weight precision and (b) Twin-8T cell.

Journal of Semiconductors    doi: 10.1088/1674-4926/43/3/031401 15

 

 
Z T Lin et al.: A review on SRAM-based computing in-memory: Circuits, functions, and applications

 



5.  Application scenarios for CIM

The  computing  functions  realizable  by  CIM  have  been
widely used in various fields, including image and voice recog-
nition,  which require data exchange between encryption and
decryption algorithms for data security. In this section, the ap-
plication scenarios of CIM, including CNN, AES, k-NN, and classi-
fier algorithms, are introduced. 

5.1.  Application in CNNs

Inspired by biological neural networks, artificial neural net-
works  are  used  in  image  processing  and  speech  recognition.
A  deep  neural  network  (DNN)  contains  at  least  two  layers  of
nonlinear  neural  units  connected  via  adjustable  synaptic
weights.  These  weights  can  be  updated  according  to  the  in-
put  data  to  optimize  the  output.  In  1990,  a  dedicated  hybrid
chip  was  developed  for  multilayer  neural  networks[74].
However, owing to its lack of flexibility, it was eventually aban-

doned  and  replaced  by  general-purpose  programmable
chips, such as field programmable gate arrays and general-pur-
pose graphics processors. The implementation of the DNN al-
gorithm requires the transmission of massive volumes of data
between  the  memory  and  the  CPU,  and  the  resulting  delay
and  power  consumption  limit  the  further  development  of
DNNs.

CNN algorithms evolved from DNN algorithms are fully ap-
plied  in  image  processing.  A  CNN  algorithm  can  be  mapped
onto  multiple  intercommunicating  SRAM  arrays,  as  illus-
trated in Fig. 20(a).  Each layer of the CNN contains several re-
petitive  MAC  operations,  and  implementing  these  MACs  in
the  traditional  von  Neumann  architecture  results  in  a  large
overhead. In CIM, the weights of the layer are stored in SRAM
cells,  and  the  input  is  represented  by  WLs  or  BLs.  A  large
amount  of  data  flowing  between  the  processor  and  the
memory  is  eliminated.  The  final  accumulation  results  are  of-

Table 3.   Summary of chip parameters and performance of single- and multibit operations.

Parameter Refs. [1, 2] Ref. [10] Refs. [15, 16] Ref. [32] Ref. [31] Ref. [44] Ref. [33] Refs. [24, 37] Ref. [34]

Tchnology 65-nm
CMOS

65-nm
CMOS

130-nm
CMOS

55-nm
CMOS

65-nm
CMOS

65-nm
TSMC

55-nm
CMOS

7-nm FinFET 65nm

Cell structure DCS 6T 10T 6T Twin-8T 8T1C 6T 6T 8T 6T
Array size 4 Kb 16 Kb 16 Kb 64×60 b 2 KB 64 Kb 4 Kb 4 Kb 64 Kb
Chip area
(μm2)

NA 6.3×104 2.67×105 4.69×104 8.1×104 NA 5.94×106 3.2×103 1.75×105

Input
precision (bit)

1 6 5 1, 2, 4 1 5 1, 2, 7, 8 4 4

Weight
precision (bit)

1 1 1 2, 5 1 5 1, 2, 8 4 1, 2, 3
4, 5, 8

Output
precision (bit)

1 6 NA 3, 5, 7 5 NA 3, 7, 10, 19 4 NA

Computing
mechanism

Analog Digital+
Analog

Digital+
Analog

Analog Analog Analog Digital+
Analog

Analog Analog

Model XNORNN/M
BNN

CNN Classify CNN CNN VGG
LeNet-5

CNN VGG-9 NN CNN

Energy
efficiency
(TOPS/W)

30.49–55.8 40.3 (1 V)
51.3 (0.8 V)

NA 18.37–
72.03

671.5 NA 0.6–40.2 351
(0.8 V)

49.4
(Input:
4b
Weight:1b)

Throughput
(GOPS)

278.2 8 (1 V)
1 (0.4 V)

NA 21.2~
67.5

1638 NA 5.14-329.14 372.4(0.8 V) 573.4
(Input:
4b
Weight:2b)

Accu-
racy

MNIST 96.5%
(XNORNN)
95.1%
(MBNN)

98%(0.8 V)
98.3%(1 V)

90% 90.02%–
99.52%

98.30% 99% 98.56%–
99.59%

98.51%–
99.99%

98.80%

CIFAR
10

NA NA NA 85.56%~
90.42%

85.50% 88.83% 85.97%-
91.93%

22.89%-
96.76%

89.00%

 

VBL

WL0

WL1

WL2

WL3

T3=8Tmin T2=4Tmin T1=2Tmin T0=Tmin

8△V

4△V

2△V

△V

15△V

(b)

VWL0 VWL0

d0 d0

6T SRAM bitcell

D

P

6T SRAM bitcell

VPRE

VWL0

VWL1

CBL CBL

CWL

CWL

Prech

(a) d3 d2 d1 d0

VWL0

4 bits

4 bits

D

P

D

P

 

Fig. 19. (Color online) (a) Schematic of SAD circuit and (b) sequence diagram.

16 Journal of Semiconductors    doi: 10.1088/1674-4926/43/3/031401

 

 
Z T Lin et al.: A review on SRAM-based computing in-memory: Circuits, functions, and applications

 



ten  reflected  in  the  BL  voltage.  Quantifying  the  analog
voltage of the BL is key to the entire operation.

The  weights  and  inputs  of  the  CNN  are  usually  multibit.
However,  to  realize  multibit  operation  in  memory,  it  is  ne-
cessary  to  change  the  cell  structure  or  add  auxiliary  circuits.
A  twin-8T  structure  was  proposed  to  realize  1b,  2b,  and  4b
inputs  and  1b,  2b,  and  5b  weights,  with  an  output  of  up  to
7b[32].  The  test  accuracy  of  the  system using the  MNIST  data-
set was as high as 99.52%. To simplify circuit design, research-
ers have developed the BNN, with binary inputs and weights,
i.e.,  “+1”  or  “–1.”  In  simple  application scenarios,  it  has  nearly
the  same  accuracy  as  the  traditional  CNN  algorithm[1, 2].  Chih
et al.[75] proposed another solution that uses all-digital CIM to
execute  MAC  operations  and  has  high  energy  efficiency  and
throughput.  In  order  to  reduce  computational  costs,  Sie et
al.[76] proposed a  software  and hardware  co-design approach
to design MARS. In this study, a SRAM-based CIM CNN acceler-
ator  that  can  utilize  multiple  SRAM  CIM  macros  as  pro-
cessing  units  and  support  a  sparse  CNN  was  also  proposed.
With  the  proposed  hardware-software  codesigned  method,
MARS  can  reach  over  700  and  400  FPS  for  CIFAR-10  and  CI-
FAR-100,  respectively.  Although  these  studies  have  realized
in-memory MAC,  they could not  execute the entire  CNN pro-
cess  in  memory.  Therefore,  the  execution  of  the  entire  pro-
cess in memory can be a possible research direction. 

5.2.  Application in encryption algorithms

With the development  of  AI,  the  amount  of  data  that  re-
quires processing has surged and concerns about data secur-

ity  have  increased.  For  example,  the  convolution  kernels  in
the CNN algorithm and convolution step are obtained by train-
ing  with  a  large  volume  of  data.  However,  the  entire  weight
is  stored in  the array  and,  therefore,  can be easily  read,  caus-
ing  data  leakage.  Encryption  is  crucial  to  big  data.  However,
the power consumption and delay in implementing a set of en-
cryption  algorithms  in  the  digital  domain  will  limit  the  over-
all  performance  of  the  system;  hence,  researchers  have  pro-
posed to implement these algorithms in memory.

Fig.  20(b)  illustrates  the  process  of  the  AES  algorithm  in
four  steps:  byte  replacement,  row  shift,  column  mixing,  and
round key addition. Byte replacement is used to replace the in-
put  plaintext  with  a  look-up  table  and  implement  the  first
round of  encryption.  The row-shift  operation shifts  the  trans-
formed matrix by a certain rule. Column mixing is the XOR op-
eration  of  the  target  and  fixed  matrices.  Round  key  addition
performs an iterative XOR between the data and the key mat-
rix.

To  implement  the  AES  algorithm  in  an  SRAM  array,  first,
the  plaintext  matrix  that  needs  to  be  encrypted  is  stored  in
the array.  Then,  the plaintext  and key matrices  are encrypted
using a  peripheral  auxiliary  circuit.  The most  repeated opera-
tion in the AES algorithm is the XOR operation; hence, imple-
menting  XOR  in  memory,  storing  the  result,  and  continuing
to perform the XOR operation with the input are key steps in
the  execution  of  the  AES  algorithm.  Agrawal et  al.[18] pro-
posed a “read-calculation and storage” strategy based on the
8T SRAM, in which the obtained XOR result  was stored in an-
other row through a data selector at the end of each column,

 

Layer1 Layer2 Layer3 Layer4
Full connection 

Layer

Dog

Cat

Cattle

CNN

(a)

128 bits 

data in
(50% XOR)(100% XOR)LUT Performed on 

state matrix

128 bits 

data out

S0 S1 S2 S3

S4 S5 S6 S7

S8 S9 S10 S11

S12 S13 S14 S15

Sub

Bytes

Shift

Rows

Mix

Column

Add

Round

Key

(b)

N<=10
AES

f

CIM

Peripheral

f

CIM

Peripheral

f

CIM

Peripheral

Weight WeightB

WL

Input

BL BLB

Q QB

 

Fig. 20. (Color online) Implementation of (a) CNN and (b) AES on multiple SRAM arrays.

Journal of Semiconductors    doi: 10.1088/1674-4926/43/3/031401 17

 

 
Z T Lin et al.: A review on SRAM-based computing in-memory: Circuits, functions, and applications

 



which  implemented  part  of  the  iterative  XOR  operation  for
the  AES.  However,  this  strategy  increases  the  area  overhead
of  the  storage  array  and  consequently  requires  an  additional
empty row in the array to store the calculation results.  Jaisw-
al et  al.  proposed  interleaving  WL  (i-SRAM)[22] as  the  basic
structure  for  embedding  bitwise  XOR  computations  in  the
SRAM  arrays,  which  improved  the  throughput  of  AES  al-
gorithms  by  a  factor  of  three.  Huang et  al.  modified  the  6T
SRAM  bitcell  with  dual  WLs  to  implement  XOR  without  com-
promising  the  parallel  computation  efficiency[46],  which  can
protect  the DNN model  in  CIM.  These studies realized part  of
the  operations  in  encryption,  and  the  realization  of  the  AES
of the entire process in memory is a research direction. 

5.3.  Application in k-nearest neighbor (k-NN)

algorithms

The k-NN algorithm is one of the simplest, most basic ML
algorithms that can be used for both classification and regres-
sion. The concept of the algorithm is as follows: if most of the
k-most  similar  samples  in  the  feature  space  belong  to  a  cat-
egory,  the  sample  also  belongs  to  that  category.  There  are
two methods to measure the distance of two samples: the Euc-
lidean distance and Manhattan distance.

In Fig.  21,  I1  and  I2  are  the  pixel  values  of  the  target
and  test  images,  respectively.  First,  the  pixel  values  of  the
same  position  of  the  test  and  training  images  were  subtrac-
ted,  followed  by  calculating  the  absolute  values  and  sum-
ming  them.  The  sum  represents  the  similarity  between  the
test  and  target  images.  The  smaller  the  value,  the  higher  the
similarity. The k-NN algorithm finds the first k images that are
most  similar  to  the  target  image.  Kang et  al.  executed  the
SAD  for  application  in  the  k-NN  algorithm[35, 50].  They  used
hand-written  number  recognition  to  test  the  accuracy  of
the algorithm on the MNIST dataset.  The results  showed that
the  CIM-based  k-NN  algorithm  has  a  high  recognition  accur-
acy of 92%. 

5.4.  Application in classifier algorithms

Classification  is  a  significantly  important  method  of  data
mining.  The  concept  of  classification  is  to  learn  a  classifica-
tion function or construct a classification model (that is,  what
we  usually  call  a  classifier)  on  the  basis  of  existing  data.
However,  it  is  challenging  to  implement  an  energy-efficient
classifier algorithm in resource-constrained devices. If the clas-
sifier  algorithm can be realized with methods of  CIM,  the fre-
quent data access will be greatly reduced.

As depicted in Fig. 22, high-precision boosted strong classi-
fier can be realized by combining column-based weak classifi-
er  C1-M.  However,  there  is  a  typical  characteristic  for  calcula-
tions  by  column  in  CIM,  which  can  be  perfectly  mapped  into
a column-based weak classifier. Zhang et al.[15, 16] achieved an
ML  classifier  based  on  the  6T  cell.  Because  of  the  nonlinear-
ity  in  column-wise  CIM,  the  result  of  each  column  can  only
form a weak classifier. In memory, the boosted strong classifi-
er  can  be  obtained  through  adder  or  subtractor  circuits  that
process  the column-wise  results  which reduces  the non-ideal
characteristic  of  analog  CIM.  In  addition,  this  design  reduces
the  energy  consumption  by  113  times  when  using  a  stand-
ard  training  algorithm.  Similarly,  a  random  forest  (RF)  ma-
chine  learning  classifier  can  be  enabled  by  a  standard  6T
SRAM  in  Ref.  [40].  It  achieved  massively  parallel  processing
thereby  minimizing  the  memory  fetches  and  reducing  en-
ergy-delay product (EDP). 

6.  Challenges and prospects

With the rapid development of AI, requirements for com-
puting  power  have  become  stringent.  The  CIM  architecture
has  ushered  in  unprecedented  development  opportunities.
All  CIM  strategies  make  a  compromise  among  bandwidth,
delay, area overhead, energy consumption, and accuracy. The
following is an analysis of several typical problems in the CIM
architecture. 

6.1.  Read-disturb issue

In CIM, it is often necessary to access multiple rows for sim-
ultaneous  computation  to  increase  the  throughput  of  data
processing.  However,  turning  on  multiple  rows  synchron-
ously connects the storage node directly to the BL, which will
cause  data  to  be  flipped  during  the  reading  process.  There-
fore,  this  strategy  resulted  in  an  error  in  the  final  calculation
result;  even  worse,  it  destroys  the  stored  data.  As  shown  in
Fig.  23,  when  the  BL  voltage  drops  decreases  significantly
and  reaches  the  write  margin,  the  cell  storing  ‘1’  will  be  mis-
takenly  written  to  ‘0’.  To  address  this  issue,  Kang et  al.[35] re-
duced  the  discharge  speed  of  a  BL  by  reducing  the  turn-on
voltage of  the  WL.  When the  WL voltage is  reduced to  a  cer-
tain  extent,  the  full  swing  BL  voltage  can  be  achieved  when
multiple  rows  are  opened  simultaneously.  Researchers  have
suggested  using  read–write  decoupling  cells  to  achieve  CIM
operations, such as 8T[3, 5, 18, 28, 37, 38, 65, 77, 78] and 10T[9−11, 56, 57],
which  can  also  obtain  the  full  RBL  voltage  swing  (from  VDD

 

56

32

10

18

90

23

128

133

24

26

178

2

0

255

220

10

20

24

17

8

10

89

12

16

178

100

4

32

233

112

46

12

14

1

33

12

0

30

2

32
SUM

456

I1 I2

130

82

13

39

10
22

108

di pi

substract

results

results di pi

k-Nearest Neighbor 

(k-NN)

100

 

Fig. 21. (Color online) Application in the k-NN algorithm.

18 Journal of Semiconductors    doi: 10.1088/1674-4926/43/3/031401

 

 
Z T Lin et al.: A review on SRAM-based computing in-memory: Circuits, functions, and applications

 



to  ground).  However,  the  bitcell  adds  transistors  at  the  ex-
pense of the storage density of the array. 

6.2.  Linearity and consistency problems in the SRAM-

based CIM

The demerit of the SRAM-based CIM is the problem of pre-
serving  linearity  and  consistency,  which  directly  determines
the final calculation accuracy. In Fig. 24(a), only one row is ac-
tivated  at  a  time  under  the  basic  SRAM  read  operation,  and
the  voltage  difference  between  BL  and  BLB  is  detected  by
the  SA  to  achieve  a  full  swing  output.  In  contrast,  in Fig.  24
(b),  four  rows  of  WLs  are  activated  simultaneously  to  realize
the calculation function,  and the pulse widths of  the WLs are
8T,  4T,  2T,  and  1T.  For  example,  if  the  input  on  the  WL  is
‘1000’,  the  WL  with  an  8T  width  is  activated.  Ideally,  the  BL
should  reduce  by  8∆v;  however,  in  practice,  it  may  only  re-
duce  by  5∆v,  leading  to  erroneous  calculations.  Moreover,
the  asynchronization  of  the  pulse  width  caused  by  latency
and the imbalance of pulse width on each WL can cause a non-
linear  BL  discharge.  In Fig.  24(c),  the  SRAM  array  is  assumed
to store identical data in each column, and the discharge is as-
sumed to be 6∆v in the column closest to the pulse-width gen-
erator.  Given  the  pulse-width  distortion,  the  farther  the
column  from  the  pulse-width  generator,  the  smaller  the  dis-
charge.  For  instance,  the  last  column  may  only  be  dis-
charged by 2∆v. Therefore, the linearity and consistency prob-
lems will affect the calculation results in a multiline read struc-
ture[35, 45, 66].

To  address  these  problems,  Lin et  al.[79, 80] proposed  a
cascode current mirror (CCM) peripheral circuit and applied it
to  the  bottom  of  each  BL.  The  CCM  clamps  the  BL  voltage
and  proportionally  duplicates  the  BL  current  in  the  addition-
al  capacitor,  increasing  the  calculation  linearity.  In  addition,
they  also  proposed  a  double  WL  structure  to  reduce  the
pulse-width delay  on the WL and increase  the consistency  of
circuit calculations. They demonstrated the ability of the CCM
circuit  to  reduce  the  integer  nonlinearity  by  approximately
70%  at  0.8  V  supply  and  improve  the  computational  consist-
ency by 56.84% at 0.9 V supply. 

6.3.  Challenge of the array size under the CIM

architecture

To increase the data throughput, the array size of the stor-
age is often expanded; however, a series of factors limit the ex-
pansion.  For  example,  to  achieve specific  functions,  research-
ers  introduced  capacitors  in  each  storage  unit[31, 58, 60, 61].  Al-
though  the  introduction  of  capacitors  increases  the  linearity
of  calculations,  it  also  increases  the  power  consumption  and
latency of the system.

Researchers  including  Jiang  have  proposed  the  C3SRAM
(capacitive-coupling  computing)  structure  to  execute  single-
bit  multiplication[31, 58].  Because  the  cell  uses  a  capacitor,  the
calculation result is ideally linear.  However,  each C3SRAM cell
has  a  capacitor  coupled  with  an  RBL.  Thus,  256  cells  in  a
column  are  equivalent  to  256  internal  capacitors  in  that
column, leading to a capacitance surge in the RBL.

The  storage  and  computing  architecture  based  on  the
8T1C  structure  proposed  by  Jia et  al.  also  uses  capacitors  in-
side cells[60, 61]. The BL capacitance has a similar cumulative ef-
fect as C3SRAM’s array;  therefore,  the overall  array size is  lim-
ited. Surplus capacitors in the array increase the precharge ti-
me and reduce the computational speed of the entire system.

Yin et  al.  designed  an  XNOR-SRAM  cell  for  ternary  multi-
plication[17],  and the result is  represented by the activation of
the transistor. If the transistor is turned on, the result is equival-
ent to a resistor Ron. This design has 256 XNOR-SRAM cells in
one column.  During operation,  512  transistors  are  turned on,
which  is  equivalent  to  512  Ron  connected  in  parallel  on  the
BL,  which  causes  the  resistance  on the  BL  to  be  insignificant,

 

BC1,1

BC2,1

BC128,1

Z1

BC1,1

BC2,1

BC128,1

Z2

BC1,1

BC2,1

BC128,1

ZM

Adder/Subtractor

In memory

Boosted strong classifier

Column-based weak classifiersColumn-based 

weak classifier C1
xZ1

Column-based 

weak classifier C2
xZ2

Column-based 

weak classifier C3
xZ3

Column-based 

weak classifier CM
xZM

Σ

 

Fig. 22. (Color online) Application in classifier algorithms.

 

QBQ

QBQ

Cell 0

WL 0=1

1

1
0

0

M0

M1

Cell n

WL n=1

BL BLB

Write margin

BL/BLB

Qn

QBn

Read 

disturb

Fig. 23. (Color online) Read disturb issue.

Journal of Semiconductors    doi: 10.1088/1674-4926/43/3/031401 19

 

 
Z T Lin et al.: A review on SRAM-based computing in-memory: Circuits, functions, and applications

 



producing  a  large  current  and  increasing  the  system’s  power
consumption. 

6.4.  Area overhead and energy efficiency challenges of

peripheral circuits

The architecture  based on CIM requires  several  peripher-
al  auxiliary  circuits  to  perform  additional  computing  func-
tions. For example, when implementing logic operations in di-
gital  functions,  two  SAs  are  required  on  each  BL  to  distin-
guish different inputs. When performing multiplication and ac-
cumulation in analog operations, the calculation results are re-
flected on the BL with an analog voltage. Therefore, peripher-
al  auxiliary  circuits  are  also  needed  to  quantify  these  voltage
values. The use of multiple high-precision ADCs for the quanti-
fication greatly increases the proportion of peripheral circuits.
In addition, multibit input modules, such as multi-pulse width
or pulse-height-generation circuits, occupy a large part of the
area.

Yin et  al.[17] designed  a  shared  ADC  with  64  columns,
quantized  it  64  times  through  a  data  selector,  and  added  a
fault-tolerant  algorithm  to  further  reduce  the  requirement  of
quantization and the overhead of  the peripheral  circuits.  Kim
et  al.[81] used  low-bit  ADCs  to  achieve  ResNet-style  BNN  al-
gorithms  via  aggressive  partial  sum  quantization  and  input-
splitting  combined  with  retraining.  The  area  overhead  is  re-
duced due to the use of low-bit ADC. Maintaining the propor-
tion  of  peripheral  circuits  within  an  acceptable  range  comes
with the loss of the accuracy of the final output digits. Interest-
ingly,  the  complexity  of  the  auxiliary  circuit  to  achieve  more
complex calculations cannot be dismissed in the CIM system-
level design.

In  the future,  peripheral  circuits  may be stacked in  3D to
form  a  pool  of  peripheral  circuit  resources  shared  by  CIM  ar-
rays.  In  addition,  the  use  of  peripheral  circuits  can  be  greatly
reduced by time-division multiplexing,  which further  reduces
the area of the SRAM-based CIM architecture. 

6.5.  Research prospect
 

6.5.1.    More efficient mapping from common operators

set to actual circuits set
In  CIM,  it  is  necessary to design various circuits  to realize

operations  of  the  algorithm.  The  same  operator  can  be  real-
ized  by  several  circuits.  In  contrast,  one  circuit  can  also  be
used  by  multiple  operators.  Therefore,  the  problem  of  selec-
tion  of  the  circuits  set  and  effectively  mapping  the  common
operator  set  to  it  must  be  studied.  As  shown  in Fig.  25,  this
problem can be studied from three aspects.

1)  Refining and merging common operator  sets.  First,  an
initial  set  of  common  operators ϕ (such  as  multiplication,
SAD, addition and subtraction,  and MAC) is  extracted accord-
ing  to  multiple  factors,  including  requirements  of  AI  algo-
rithms,  and  computational  complexity  and  efficiency.  Then,
part  of  the  operators  must  be  split  based  on  the  initial  set ϕ,
which will  facilitate the further integration of  some operators
and  circuit  implementation.  For  example,  the  SAD  can  be
split into difference, absolute values, and addition operators.

2)  Exploring  the  appropriate  circuit  sets.  The  design  pro-
cess  of  the  circuit  set  must  consider,  for  example,  the  cover-
age of the circuit set, its redundancy, the accuracy of the calcu-
lation,  the  cost  of  the  circuit  area,  and  circuit  latency  and
power  consumption.  The  circuits  set  can  be  subdivided  by
the  computational  complexity  and  data  requirements.  On
this  basis,  a  unified  interface  is  designed  for  the  circuit  mod-
ule,  which  is  convenient  for  the  upper  architecture  to  organ-
ize and implement.

3)  Designing  word-column/row-block  hierarchical  shar-
ing architecture. Flexible and configurable hierarchical architec-
ture is key to realizing mapping from a common operator set
to  a  circuit  set.  The  memory  array  can  be  divided  into  a
word-column/row-block three-tier  system. The lowest  layer  is
the word-level memory computing layer, which has the tight-
est  memory  computing  coupling  and  requires  the  lowest
area cost and power among all  the layers.  It  can directly read
and write the data of a single word, transmit it rapidly, and per-
form lightweight operations. The implementation of simple op-
erators  in  word-level  memory  computing  can  improve  en-
ergy  efficiency.  The  middle  layer  is  a  column/row  level
memory-computing layer and has column- or row-shared oper-
ation  units,  such  as  a  linearity  compensation  module,  and  a
consistency compensation module that improve the perform-
ance  of  multibyte  operations.  This  layer,  in  which  more  com-
plex operators can be implemented, balances the energy effi-

 

SA & Digitial output

0  1  1  0 0  1  1  0 15 0 3 8 12 0 4 6 9 13 11 1

T 8T

4T
2T

1T

IMC based on BL/BLB

Activate 

multiple 

rows

Activate 

single 

row

VBL

ΔVBL

VBL

Linearity

8ΔV 

(a) (b)

SRAM array SRAM array

Weight

Nonlinearity

5ΔV  

6 6 6 6 6 5 5 4 3 3 2 2

IMC based on BL/BLB

Inconsisten cy

Error

6ΔV 2ΔV

SRAM array

Identical data

(c)

 

Fig. 24. (Color online) (a) Single row activation during normal SRAM read operation, (b) multirow read and nonlinearity during CIM, and (c) incon-
sistent CIM calculation.

20 Journal of Semiconductors    doi: 10.1088/1674-4926/43/3/031401

 

 
Z T Lin et al.: A review on SRAM-based computing in-memory: Circuits, functions, and applications

 



ciency, area cost, and power consumption. The uppermost lay-
er  is  the  block-level  memory  computing  layer.  Although
memory and computing in this  layer are loosely coupled,  the
layer  has  the highest  tolerance for  area,  power  consumption,
and  delay  cost,  and  it  suffers  latency  and  demands  a  large
amount  of  power  in  performing  operations,  data  caching,
and  quantization.  The  implementation  of  complex  operators
in  the  block-level  memory-computing  layer  can  enrich  the
functions  of  the CIM system and provide a  smooth transition
between the CIM system and the traditional von Neumann ar-
chitecture. 

6.5.2.    Optimize the CIM process
The  primary  steps  of  CIM  include  reading  and  comput-

ing,  along  with  a  series  of  processes  of  writing,  quantization,
and  writeback.  The  optimization  of  the  entire  process,  which
is key to realizing energy-efficient, high-throughput, and low-
area-overhead  CIM,  can  be  performed  from  the  following
three aspects, as shown in Fig. 26.

1)  A  horizontal  computing  channel  can  be  introduced  to
implement a bidirectional memory computing system. The in-
tent  of  SRAM  is  to  introduce  computing  units  into  the  stor-
age array, reduce data movement, and break through the stor-
age wall. However, in-memory calculations mainly rely on ver-
tical accumulative paths and can only be performed after stor-
age  rearrangement,  which  complicates  the  calculation  pro-
cess,  changing  from  write  → read  → calculation  → write-
back in the von Neumann architecture to write → read → stor-
age  rearrangement  → write  → read–calculation  integration
→ quantification  → writeback.  The  entire  process  consumed
significantly more energy than the original consumption with
von Neumann architecture. Therefore, as shown in Fig. 25, hori-
zontal  computational  channels  can  be  used  to  enable  CIM
without storage rearrangement. Simultaneously, the vertical cu-
mulative path is preserved to make it compatible with the ver-

tical parallel reading techniques; thus, the bidirectional CIM ar-
chitecture can be implemented with a small area cost.

2)  A  low-powered  fast-migration  channel  is  introduced,
and  efficient  data-storage  patterns  are  designed  to  reduce
the  power  consumed  by  migration.  It  was  found  that  the
data  used  by  two  adjacent  calculations  overlapped  signific-
antly  in  the  CNN.  To  improve  data  utilization  and  reduce  the
volume  of  reloaded  data,  it  is  necessary  to  study  the  discon-
tinuous  data-storage  mode  to  meet  the  requirements  of  the
algorithm  and  improve  the  coupling  between  computing
and  storage.  Additionally,  a  fast  data-migration  channel  can
perform  multiple  calculations  continuously  without  reload-
ing data.

3) Memory circuits can be designed based on the reuse/re-
construction/transformation  strategy.  First,  the  existing  mod-
ules  of  the  SRAM  memory  are  fully  harnessed.  The  reusable
modules  include  sensitive  amplifiers,  BLs,  WLs,  redundant
columns,  and  decoding  circuits.  Second,  the  existing  module
structure is subtly modified to induce new functions into exist-
ing  SRAM  modules  at  a  markedly  low  area  cost.  With  the  SA
as an example, an appropriate configuration transistor can be
included  to  not  only  induce  the  amplification  and  comparis-
on functions into the SA but also generate the SIGMOID func-
tion and reconstruct it as part of the ADC (Fig. 25). With the re-
dundant column of a duplicate BL as an example, a small num-
ber  of  switches  can  be  included  to  transform  the  redundant
column  into  a  pulse-width-generation  module  that  can  track
the process voltage and temperature variations. The same cir-
cuit  can be used as  part  of  the operators  with  different  func-
tions  through  a  time-division  multiplexing  strategy,  which
greatly reduces the area cost incurred by CIM. Third, the calcu-
lation mode is changed from analog domain calculation to di-
gital–analog hybrid  calculation,  which not  only  preserves  the
advantages  of  analog  calculation  but  also  remarkably  re-

 

1 2

3

+

-
SA

ADC

Area

constraint

CoverageRedundancy

Delay

constraint

Power 

Consumption

constraint

E
x
p

lo
r
e
 a

p
p

r
o
p

r
ia

te
 

c
ir

c
u

it
 s

e
ts

F
le

x
ib

le
 a

n
d

 

c
o

n
fi

g
u

r
a

b
le

 l
a
y
e
r
e
d

 

a
r
c
h

it
e
c
tu

r
e

R
e
fi

n
in

g
 a

n
d

 

m
e
rg

in
g

 c
o

m
m

o
n

 

o
p

e
r
a

to
r

s
se

t

Σ

*

Word

Column (Row)

Block

Layered sharing
Column (Row) sharing layer

Word sharing layer

Block sharing layer

Low

High

Complex

Simple

Coupling 

degree
Operation 

Perceptron (P) Feed Forward 

(FF)

Radial Basis 

Network (RBF)

Recurrent Neural 

Network (RNN)
Long/Short Term 

Memory ((LSTM)

Auto Encoder (AE)
Variational AE 

(VAE)

Denoising AE 

(DAE)

Markov Chain 

(MC)

Nopfieeld Network 

(HN)

Boltzmann 

Machine (BM)

 

Fig. 25. (Color online) Approach of mapping from the common operator set to the actual circuits.

Journal of Semiconductors    doi: 10.1088/1674-4926/43/3/031401 21

 

 
Z T Lin et al.: A review on SRAM-based computing in-memory: Circuits, functions, and applications

 



duces the difficulty of circuit implementation. 

6.5.3.    Realize the programmability of the SRAM-based

CIM architecture
Although  traditional  computing  architectures  (such  as

CPUs and GPUs) are limited in terms of  energy efficiency and
memory  bandwidth,  their  appeal  lies  in  their  general-pur-
pose  functions  and  programmability  and  their  ability  to  per-
form  various  arithmetic  operations  and  execute  different  al-
gorithms. The existing in-memory technology can achieve sev-
eral  computing  functions.  However,  a  few  of  these  CIM  mac-
ros  have  poor  compatibility  with  software  and  limited  bit-
width accuracy.  Therefore,  they cannot execute complex pro-
grammable functions and are limited to specific applications.

Interestingly,  research  on  the  development  of  program-
mable  CIMs  is  underway.  For  example,  Wang et  al.  proposed
a  general  hybrid  memory/near  memory  computing  struc-
ture[12],  which  supports  the  development  of  neural  networks
and software algorithms and offers flexibility and programma-
bility.  Jia et al.  proposed a programmable heterogeneous mi-

croprocessor[60] and  a  programmable  neural-network  reason-
ing  accelerator[59],  which  can  realize  a  scalable  bit  width  and
programmable functions.

The functions that can be realized by existing CIM are relat-
ively simple, and multiple complex operations cannot be per-
formed simultaneously. However, the novelty of CIM is that it
solves  the  problem  of  storage  walls.  Therefore,  studies  have
proposed  more  stringent  requirements  for  the  universality
and  programmability  of  the  CIM  architecture.  As  shown  in
Fig.  27,  to  leverage  all  its  advantages,  the  CIM  architecture
must be able to implement a multithreaded CIM macro com-
bined with a pipeline processor. 

7.  Conclusion

CIM technology addresses  the limitation of  the tradition-
al architecture (i.e., separate storage and computation) and ef-
fectively  implements  AI  algorithms.  To  allow  CIM  to  perform
complex operations, the basic cells in the circuit may be modi-
fied,  and  peripheral  circuits  must  be  added.  This  paper  de-

 

Sense Amplifier

S
en

se
 A

m
p

li
fi

er

Compatible multi-row reading

H
o

ri
zo

n
ta

l 
c
a
lc

u
la

ti
o
n

 c
h

a
n

n
el

Fast data migration channel

e
d

o
m

e
g

ar
ots

at
a

d
s

u
o

u
nit

n
o

csi
D

R
e
c
o
n

fi
g
u

r
in

g

SA

SA

SA

Reusable

Replica Bitline
Redundant 

column

RC

DC

DC

Replica 1

Replica 2

Replica 4

Replica 8

RBL

VDDBL

VDD

1T

2T

8T

WL

WL

WL 4T

WL

 

Fig. 26. (Color online) Architecture of the bidirectional CIM system, including a reusable and reconfigurable module.

 

Memory

CIM

f

Memory

CIM

f

Memory

CIM

f

Pipeline processor

Bus

Memory

CIM

f

 

Fig. 27. (Color online) Multithreaded CIM macro based on a pipeline processor.

22 Journal of Semiconductors    doi: 10.1088/1674-4926/43/3/031401

 

 
Z T Lin et al.: A review on SRAM-based computing in-memory: Circuits, functions, and applications

 



tailed  the  different  basic  cell  structures  and  peripheral  auxili-
ary circuits of CIM. It also investigated various computing func-
tions that can be realized by the existing CIM framework and
their applications. Finally, the challenges encountered by cur-
rent CIM macros based on SRAM and the future scope of CIM
were  analyzed.  To  improve  the  computational  accuracy  and
capability  of  the  CIM  architecture,  we  recommend  efficient
mapping the common operators  set  to a  circuit  set  and opti-
mizing the CIM process under spatiotemporal constraints. En-
hancing the  programmability  of  the  CIM architecture  will  en-
hance its compatibility with general CPUs and enable its wide
usage across industries. 

Acknowledgements

This  work  was  supported  by  the  National  Key  Research
and  Development  Program  of  China  (2018YFB2202602),  The
State  Key  Program  of  the  National  Natural  Science  Founda-
tion  of  China  (NO.61934005),  The  National  Natural  Science
Foundation of China (NO.62074001), and Joint Funds of the Na-
tional  Natural  Science  Foundation  of  China  under  Grant
U19A2074.

References

Si X, Khwa W S, Chen J J, et al. A dual-split 6T SRAM-based comput-
ing-in-memory unit-macro with fully parallel product-sum opera-
tion for binarized DNN edge processors. IEEE Trans Circuits Syst I,
2019, 66, 4172

[1]

Khwa W S, Chen J J,  Li J F, et al.  A 65nm 4Kb algorithm-depend-
ent  computing-in-memory  SRAM  unit-macro  with  2.3ns  and
55.8TOPS/W fully parallel product-sum operation for binary DNN
edge processors. 2018 IEEE International Solid-State Circuits Con-
ference, 2018, 496

[2]

Jaiswal A, Chakraborty I, Agrawal A, et al. 8T SRAM cell as a multib-
it dot-product engine for beyond von Neumann computing. IEEE
Trans Very Large Scale Integr VLSI Syst, 2019, 27, 2556

[3]

Lu L, Yoo T, Le V L, et al.  A 0.506-pJ 16-kb 8T SRAM with vertical
read  wordlines  and  selective  dual  split  power  lines. IEEE  Trans
Very Large Scale Integr VLSI Syst, 2020, 28, 1345

[4]

Lin Z T,  Zhan H L,  Li  X,  et al.  In-memory computing with double
word lines and three read Ports for four operands. IEEE Trans Very
Large Scale Integr VLSI Syst, 2020, 28, 1316

[5]

Srinivasa S, Chen W H, Tu Y N, et al. Monolithic-3D integration aug-
mented design techniques for computing in SRAMs. 2019 IEEE In-
ternational Symposium on Circuits and Systems, 2019, 1

[6]

Zeng  J  M,  Zhang  Z,  Chen  R  H,  et  al.  DM-IMCA:  A  dual-mode  in-
memory computing architecture for general purpose processing.
IEICE Electron Express, 2020, 17, 20200005

[7]

Ali  M,  Agrawal  A,  Roy  K.  RAMANN:  in-SRAM  differentiable
memory computations for memory-augmented neural networks.
Proceedings  of  the  ACM/IEEE  International  Symposium  on  Low
Power Electronics and Design, 2020, 61

[8]

Agrawal A, Jaiswal A, Roy D, et al.  Xcel-RAM: Accelerating binary
neural  networks in high-throughput SRAM compute arrays. IEEE
Trans Circuits Syst I, 2019, 66, 3064

[9]

Biswas  A,  Chandrakasan  A  P.  CONV-SRAM:  An  energy-efficient
SRAM  with  in-memory  dot-product  computation  for  low-power
convolutional  neural  networks. IEEE  J  Solid  State  Circuits,  2019,
54, 217

[10]

Lin Z T, Zhu Z Y, Zhan H L, et al. Two-direction in-memory comput-
ing  based  on  10T  SRAM  with  horizontal  and  vertical  decoupled
read Ports. IEEE J Solid State Circuits, 2021, 56, 2832

[11]

Wang  J  C,  Wang  X  W,  Eckert  C,  et  al.  A  28-nm  compute  SRAM
with  bit-serial  logic/arithmetic  operations  for  programmable  in-

[12]

memory  vector  computing. IEEE  J  Solid  State  Circuits,  2020,  55,
76
Wang J C, Wang X W, Eckert C, et al. A compute SRAM with bit-seri-
al  integer/floating-point  operations  for  programmable  in-
memory  vector  acceleration. 2019  IEEE  International  Solid-State
Circuits Conference, 2019, 224

[13]

Jiang H W, Peng X C, Huang S S, et al. CIMAT: a transpose SRAM-
based  compute-in-memory  architecture  for  deep  neural  net-
work on-chip training. Proceedings of the International Symposi-
um on Memory Systems, 2019, 490

[14]

Zhang  J  T,  Wang  Z,  Verma  N.  In-memory  computation  of  a  ma-
chine-learning classifier in a standard 6T SRAM array. IEEE J Solid
State Circuits, 2017, 52, 915

[15]

Zhang J T, Wang Z, Verma N. A machine-learning classifier imple-
mented  in  a  standard  6T  SRAM  array. 2016  IEEE  Symposium  on
VLSI Circuits, 2016, 1

[16]

Jiang Z W, Yin S H, Seok M, et al. XNOR-SRAM: In-memory comput-
ing  SRAM  macro  for  binary/ternary  deep  neural  networks. 2018
IEEE Symp VLSI Technol, 2018, 173

[17]

Agrawal  A,  Jaiswal  A,  Lee  C,  et  al.  X-SRAM:  Enabling  in-memory
Boolean computations in CMOS static random access memories.
IEEE Trans Circuits Syst I, 2018, 65, 4219

[18]

Jeloka  S,  Akesh  N  B,  Sylvester  D,  et  al.  A  28  nm  configurable
memory  (TCAM/BCAM/SRAM)  using  push-rule  6T  bit  cell  en-
abling logic-in-memory. IEEE J Solid State Circuits, 2016, 51, 1009

[19]

Dong  Q,  Jeloka  S,  Saligane  M,  et  al.  A  4  2T  SRAM  for  searching
and in-memory computing with 0.3-V VDDmin. IEEE J Solid State Cir-
cuits, 2018, 53, 1006

[20]

Rajput  A  K,  Pattanaik  M.  Implementation  of  Boolean  and  arit-
hmetic  functions  with  8T  SRAM  cell  for  in-memory  computa-
tion. 2020  International  Conference  for  Emerging  Technology,
2020, 1

[21]

Jaiswal A, Agrawal A, Ali M F, et al. I-SRAM: Interleaved wordlines
for  vector  Boolean  operations  using  SRAMs. IEEE  Trans  Circuits
Syst I, 2020, 67, 4651

[22]

Surana  N,  Lavania  M,  Barma  A,  et  al.  Robust  and  high-perform-
ance  12-T  interlocked  SRAM  for  in-memory  computing. 2020
Design,  Automation  &  Test  in  Europe  Conference  &  Exhibition,
2020, 1323

[23]

Simon W A, Qureshi Y M, Rios M, et al. BLADE: an in-cache comput-
ing  architecture  for  edge  devices. IEEE  Trans  Comput,  2020,  69,
1349

[24]

Chen  J,  Zhao  W  F,  Ha  Y  J.  Area-efficient  distributed  arithmetic
optimization  via  heuristic  decomposition  and  in-memroy  com-
puting. 2019 IEEE 13th International Conference on ASIC, 2019, 1

[25]

Lee K, Jeong J, Cheon S, et al. Bit parallel 6T SRAM in-memory com-
puting  with  reconfigurable  bit-precision. 2020  57th  ACM/IEEE
Design Automation Conference, 2020, 1

[26]

Simon  W,  Galicia  J,  Levisse  A,  et  al.  A  fast,  reliable  and  wide-
voltage-range  in-memory  computing  architecture. Proceedings
of the 56th Annual Design Automation Conference, 2019, 1

[27]

Chen H C, Li J F, Hsu C L, et al. Configurable 8T SRAM for enbling
in-memory  computing. 2019  2nd  International  Conference  on
Communication Engineering and Technology, 2019, 139

[28]

Gupta N, Makosiej A, Vladimirescu A, et al. 1.56GHz/0.9V energy-ef-
ficient  reconfigurable  CAM/SRAM  using  6T-CMOS  bitcell. ESS-
CIRC 2017 -  43rd  IEEE  European Solid  State  Circuits  Conference,
2017, 316

[29]

Sun X Y, Liu R, Peng X C, et al. Computing-in-memory with SRAM
and RRAM for binary neural networks. 2018 14th IEEE Internation-
al  Conference on Solid-State  and Integrated Circuit  Technology,
2018, 1

[30]

Jiang Z W, Yin S H, Seo J S, et al. C3SRAM: in-memory-computing
SRAM macro based on capacitive-coupling computing. IEEE Sol-
id State Circuits Lett, 2019, 2, 131

[31]

Si  X,  Chen  J  J,  Tu  Y  N,  et  al.  A  twin-8T  SRAM  computation-in-[32]

Journal of Semiconductors    doi: 10.1088/1674-4926/43/3/031401 23

 

 
Z T Lin et al.: A review on SRAM-based computing in-memory: Circuits, functions, and applications

 

https://doi.org/10.1109/TCSI.2019.2928043
https://doi.org/10.1109/TCSI.2019.2928043
https://doi.org/10.1109/TVLSI.2019.2929245
https://doi.org/10.1109/TVLSI.2019.2929245
https://doi.org/10.1109/TVLSI.2019.2956232
https://doi.org/10.1109/TVLSI.2019.2956232
https://doi.org/10.1109/TVLSI.2020.2976099
https://doi.org/10.1109/TVLSI.2020.2976099
https://doi.org/10.1587/elex.17.20200005
https://doi.org/10.1109/TCSI.2019.2907488
https://doi.org/10.1109/TCSI.2019.2907488
https://doi.org/10.1109/JSSC.2018.2880918
https://doi.org/10.1109/JSSC.2018.2880918
https://doi.org/10.1109/JSSC.2021.3061260
https://doi.org/10.1109/JSSC.2019.2939682
https://doi.org/10.1109/JSSC.2019.2939682
https://doi.org/10.1109/JSSC.2016.2642198
https://doi.org/10.1109/JSSC.2016.2642198
https://doi.org/10.1109/TCSI.2018.2848999
https://doi.org/10.1109/JSSC.2016.2515510
https://doi.org/10.1109/JSSC.2017.2776309
https://doi.org/10.1109/JSSC.2017.2776309
https://doi.org/10.1109/JSSC.2017.2776309
https://doi.org/10.1109/TCSI.2020.3005783
https://doi.org/10.1109/TCSI.2020.3005783
https://doi.org/10.1109/TC.2020.2972528
https://doi.org/10.1109/TC.2020.2972528
https://doi.org/10.1109/LSSC.2019.2934831
https://doi.org/10.1109/LSSC.2019.2934831
https://doi.org/10.1109/LSSC.2019.2934831
https://doi.org/10.1109/TCSI.2019.2928043
https://doi.org/10.1109/TCSI.2019.2928043
https://doi.org/10.1109/TVLSI.2019.2929245
https://doi.org/10.1109/TVLSI.2019.2929245
https://doi.org/10.1109/TVLSI.2019.2956232
https://doi.org/10.1109/TVLSI.2019.2956232
https://doi.org/10.1109/TVLSI.2020.2976099
https://doi.org/10.1109/TVLSI.2020.2976099
https://doi.org/10.1587/elex.17.20200005
https://doi.org/10.1109/TCSI.2019.2907488
https://doi.org/10.1109/TCSI.2019.2907488
https://doi.org/10.1109/JSSC.2018.2880918
https://doi.org/10.1109/JSSC.2018.2880918
https://doi.org/10.1109/JSSC.2021.3061260
https://doi.org/10.1109/JSSC.2019.2939682
https://doi.org/10.1109/JSSC.2019.2939682
https://doi.org/10.1109/JSSC.2016.2642198
https://doi.org/10.1109/JSSC.2016.2642198
https://doi.org/10.1109/TCSI.2018.2848999
https://doi.org/10.1109/JSSC.2016.2515510
https://doi.org/10.1109/JSSC.2017.2776309
https://doi.org/10.1109/JSSC.2017.2776309
https://doi.org/10.1109/JSSC.2017.2776309
https://doi.org/10.1109/TCSI.2020.3005783
https://doi.org/10.1109/TCSI.2020.3005783
https://doi.org/10.1109/TC.2020.2972528
https://doi.org/10.1109/TC.2020.2972528
https://doi.org/10.1109/LSSC.2019.2934831
https://doi.org/10.1109/LSSC.2019.2934831
https://doi.org/10.1109/LSSC.2019.2934831


memory unit-macro for  multibit  CNN-based AI  edge processors.
IEEE J Solid State Circuits, 2020, 55, 189
Chiu Y C, Zhang Z X, Chen J J, et al. A 4-kb 1-to-8-bit configurable
6T  SRAM-based  computation-in-memory  unit-macro  for  CNN-
based  AI  edge  processors. IEEE  J  Solid  State  Circuits,  2020,  55,
2790

[33]

Chen  Z  Y,  Yu  Z  H,  Jin  Q,  et  al.  CAP-RAM:  A  charge-domain  in-
memory  computing  6T-SRAM  for  accurate  and  precision-pro-
grammable  CNN  inference. IEEE  J  Solid  State  Circuits,  2021,  56,
1924

[34]

Kang  M  G,  Gonugondla  S  K,  Patil  A,  et  al.  A  multi-functional  in-
memory  inference  processor  using  a  standard  6T  SRAM  array.
IEEE J Solid State Circuits, 2018, 53, 642

[35]

Kang  M,  Gonugondla  S  K,  Keel  M,  et  al.  An  energy-efficient
memory-based  high-throughput  VLSI  architecture  for  convolu-
tional  networks.  2015  IEEE  International  Conference  on  Acous-
tics, Speech and Signal Processing, 2015, 1037

[36]

Dong  Q,  Sinangil  M  E,  Erbagci  B,  et  al.  A  351TOPS/W  and
372.4GOPS  compute-in-memory  SRAM  macro  in  7nm  FinFET
CMOS for machine-learning applications. 2020 IEEE International
Solid-State Circuits Conference, 2020, 242

[37]

Sinangil  M  E,  Erbagci  B,  Naous  R,  et  al.  A  7-nm  compute-in-
memory SRAM macro supporting multi-bit input, weight and out-
put and achieving 351 TOPS/W and 372.4 GOPS. IEEE J Solid State
Circuits, 2021, 56, 188

[38]

Kang M G, Gonugondla S, Patil A, et al. A 481pJ/decision 3.4M de-
cision/s multifunctional deep In-memory inference processor us-
ing standard 6T sram array. arXiv: 1610.07501, 2016

[39]

Kang  M  G,  Gonugondla  S  K,  Shanbhag  N  R.  A  19.4  nJ/decision
364K decisions/s in-memory random forest classifier in 6T SRAM
array. ESSCIRC 2017 - 43rd IEEE European Solid State Circuits Con-
ference, 2017, 263

[40]

Chang J, Chen Y H, Chan G, et al. A 5nm 135Mb SRAM in EUV and
high-mobility-channel  FinFET  technology  with  metal  coupling
and charge-sharing write-assist  circuitry  schemes for  high-dens-
ity  and  low-VMIN  applications. 2020  IEEE  International  Solid-
State Circuits Conference, 2020, 238

[41]

Si  X,  Tu  Y  N,  Huang  W  H,  et  al.  A  28nm  64Kb  6T  SRAM  com-
puting-in-memory  macro  with  8b  MAC  operation  for  AI  edge
chips. 2020  IEEE  International  Solid-State  Circuits  Conference,
2020, 246

[42]

Su J W, Si X, Chou Y C, et al. A 28nm 64Kb inference-training two-
way transpose multibit  6T SRAM compute-in-memory macro for
AI edge chips. 2020 IEEE International Solid-State Circuits Confer-
ence, 2020, 240

[43]

Ali M, Jaiswal A, Kodge S, et al. IMAC: in-memory multi-bit multi-
plication and ACcumulation in 6T SRAM array. IEEE Trans Circuits
Syst I, 2020, 67, 2521

[44]

Gonugondla  S  K,  Kang  M  G,  Shanbhag  N.  A  42pJ/decision
3.12TOPS/W  robust  in-memory  machine  learning  classifier  with
on-chip training. 2018 IEEE International Solid-State Circuits Con-
ference, 2018, 490

[45]

Huang  S  S,  Jiang  H  W,  Peng  X  C,  et  al.  XOR-CIM:  compute-in-
memory SRAM architecture with embedded XOR encryption. Pro-
ceedings  of  the  39th  International  Conference  on  Computer-
Aided Design, 2020, 1

[46]

Kim  H,  Chen  Q,  Kim  B.  A  16K  SRAM-based  mixed-signal  in-
memory computing macro featuring voltage-mode accumulator
and row-by-row ADC. 2019 IEEE Asian Solid-State Circuits Confer-
ence, 2019, 35

[47]

Jain S, Lin L Y, Alioto M. Broad-purpose in-memory computing for
signal  monitoring  and  machine  learning  workloads. IEEE  Solid
State Circuits Lett, 2020, 3, 394

[48]

Bose  S  K,  Mohan  V,  Basu  A.  A  75kb  SRAM  in  65nm  CMOS  for
in-memory  computing  based  neuromorphic  image  denoising.
2020  IEEE  International  Symposium  on  Circuits  and  Systems,

[49]

2020, 1
Kang M G, Keel M S, Shanbhag N R, et al. An energy-efficient VLSI
architecture for pattern recognition via deep embedding of com-
putation in SRAM. 2014 IEEE International Conference on Acous-
tics, Speech and Signal Processing, 2014, 8326

[50]

Gong M X,  Cao N Y,  Chang M Y,  et  al.  A 65nm thermometer-en-
coded time/charge-based compute-in-memory neural network ac-
celerator  at  0.735pJ/MAC and 0.41pJ/update. IEEE Trans  Circuits
Syst II, 2021, 68, 1408

[51]

Lee  E,  Han  T,  Seo  D,  et  al.  A  charge-domain  scalable-weight  in-
memory computing macro with dual-SRAM architecture for preci-
sion-scalable  DNN  accelerators. IEEE  Trans  Circuits  Syst  I,  2021,
68, 3305

[52]

Kim J, Koo J, Kim T, et al. Area-efficient and variation-tolerant in-
memory BNN computing using 6T SRAM array. 2019 Symposium
on VLSI Circuits, 2019, C118

[53]

Noel  J  P,  Pezzin  M,  Gauchi  R,  et  al.  A  35.6  TOPS/W/mm2 3-stage
pipelined  computational  SRAM  with  adjustable  form  factor  for
highly  data-centric  applications. IEEE  Solid  State  Circuits  Lett,
2020, 3, 286

[54]

Jiang  H  W,  Peng  X  C,  Huang  S  S,  et  al.  CIMAT:  A  compute-in-
memory  architecture  for  on-chip  training  based  on  transpose
SRAM arrays. IEEE Trans Comput, 2020, 69, 944

[55]

Biswas  A,  Chandrakasan  A  P.  Conv-RAM:  An  energy-efficient
SRAM  with  embedded  convolution  computation  for  low-power
CNN-based machine learning applications. 2018 IEEE Internation-
al Solid-State Circuits Conference, 2018, 488

[56]

Nguyen V  T,  Kim J  S,  Lee  J  W.  10T  SRAM computing-in-memory
macros for binary and multibit MAC operation of DNN edge pro-
cessors. IEEE Access, 2021, 9, 71262

[57]

Jiang Z W, Yin S H, Seo J S, et al. C3SRAM: an in-memory-comput-
ing  SRAM  macro  based  on  robust  capacitive  coupling  comput-
ing mechanism. IEEE J Solid State Circuits, 2020, 55, 1888

[58]

Jia  H  Y,  Ozatay  M,  Tang  Y  Q,  et  al.  A  programmable  neural-net-
work inference accelerator based on scalable in-memory comput-
ing. 2021 IEEE International Solid-State Circuits Conference, 2021,
236

[59]

Jia H Y, Valavi H, Tang Y Q, et al. A programmable heterogeneous
microprocessor  based  on  bit-scalable  in-memory  computing.
IEEE J Solid State Circuits, 2020, 55, 2609

[60]

Valavi  H,  Ramadge P  J,  Nestler  E,  et  al.  A  mixed-signal  binarized
convolutional-neural-network  accelerator  integrating  dense
weight  storage  and  multiplication  for  reduced  data  movement.
2018 IEEE Symposium on VLSI Circuits, 2018, 141

[61]

Su J W, Chou Y C, Liu R H, et al. A 28nm 384kb 6T-SRAM computa-
tion-in-memory macro with 8b precision for AI edge chips. 2021
IEEE International Solid- State Circuits Conference, 2021, 250

[62]

Khaddam-Aljameh  R,  Francese  P  A,  Benini  L,  et  al.  An  SRAM-
based  multibit  in-memory  matrix-vector  multiplier  with  a  preci-
sion that scales linearly in area, time, and power. IEEE Trans Very
Large Scale Integr VLSI Syst, 2020, 29, 372

[63]

Zhang J,  Lin Z T,  Wu X L,  et  al.  An 8T SRAM array with configur-
able word lines for in-memory computing operation. Electronics,
2021, 10, 300

[64]

Nasrin  S,  Ramakrishna  S,  Tulabandhula  T,  et  al.  Supported-Bin-
aryNet:  Bitcell  array-based  weight  supports  for  dynamic  accur-
acy-energy  trade-offs  in  SRAM-based  binarized  neural  network.
2020  IEEE  International  Symposium  on  Circuits  and  Systems,
2020, 1

[65]

Gonugondla  S  K,  Kang  M  G,  Shanbhag  N  R.  A  variation-tolerant
in-memory machine learning classifier via on-chip training. IEEE J
Solid State Circuits, 2018, 53, 3163

[66]

Wang B, Nguyen T Q, Do A T, et al. Design of an ultra-low voltage
9T  SRAM  with  equalized  bitline  leakage  and  CAM-assisted  en-
ergy efficiency improvement. IEEE Trans Circuits Syst I,  2015,  62,
441

[67]

24 Journal of Semiconductors    doi: 10.1088/1674-4926/43/3/031401

 

 
Z T Lin et al.: A review on SRAM-based computing in-memory: Circuits, functions, and applications

 

https://doi.org/10.1109/JSSC.2019.2952773
https://doi.org/10.1109/JSSC.2020.3005754
https://doi.org/10.1109/JSSC.2020.3005754
https://doi.org/10.1109/JSSC.2021.3056447
https://doi.org/10.1109/JSSC.2021.3056447
https://doi.org/10.1109/JSSC.2017.2782087
https://doi.org/10.1109/JSSC.2020.3031290
https://doi.org/10.1109/JSSC.2020.3031290
https://doi.org/10.1109/TCSI.2020.2981901
https://doi.org/10.1109/TCSI.2020.2981901
https://doi.org/10.1109/LSSC.2020.3024838
https://doi.org/10.1109/LSSC.2020.3024838
https://doi.org/10.1109/TCSII.2020.3027801
https://doi.org/10.1109/TCSII.2020.3027801
https://doi.org/10.1109/TCSI.2021.3080042
https://doi.org/10.1109/TCSI.2021.3080042
https://doi.org/10.1109/LSSC.2020.3010377
https://doi.org/10.1109/LSSC.2020.3010377
https://doi.org/10.1109/ACCESS.2021.3079425
https://doi.org/10.1109/JSSC.2020.2992886
https://doi.org/10.1109/JSSC.2020.2987714
https://doi.org/10.1109/TVLSI.2020.3037871
https://doi.org/10.1109/TVLSI.2020.3037871
https://doi.org/10.3390/electronics10030300
https://doi.org/10.3390/electronics10030300
https://doi.org/10.1109/JSSC.2018.2867275
https://doi.org/10.1109/JSSC.2018.2867275
https://doi.org/10.1109/TCSI.2014.2360760
https://doi.org/10.1109/TCSI.2014.2360760
https://doi.org/10.1109/JSSC.2019.2952773
https://doi.org/10.1109/JSSC.2020.3005754
https://doi.org/10.1109/JSSC.2020.3005754
https://doi.org/10.1109/JSSC.2021.3056447
https://doi.org/10.1109/JSSC.2021.3056447
https://doi.org/10.1109/JSSC.2017.2782087
https://doi.org/10.1109/JSSC.2020.3031290
https://doi.org/10.1109/JSSC.2020.3031290
https://doi.org/10.1109/TCSI.2020.2981901
https://doi.org/10.1109/TCSI.2020.2981901
https://doi.org/10.1109/LSSC.2020.3024838
https://doi.org/10.1109/LSSC.2020.3024838
https://doi.org/10.1109/TCSII.2020.3027801
https://doi.org/10.1109/TCSII.2020.3027801
https://doi.org/10.1109/TCSI.2021.3080042
https://doi.org/10.1109/TCSI.2021.3080042
https://doi.org/10.1109/LSSC.2020.3010377
https://doi.org/10.1109/LSSC.2020.3010377
https://doi.org/10.1109/ACCESS.2021.3079425
https://doi.org/10.1109/JSSC.2020.2992886
https://doi.org/10.1109/JSSC.2020.2987714
https://doi.org/10.1109/TVLSI.2020.3037871
https://doi.org/10.1109/TVLSI.2020.3037871
https://doi.org/10.3390/electronics10030300
https://doi.org/10.3390/electronics10030300
https://doi.org/10.1109/JSSC.2018.2867275
https://doi.org/10.1109/JSSC.2018.2867275
https://doi.org/10.1109/TCSI.2014.2360760
https://doi.org/10.1109/TCSI.2014.2360760


Xue C X, Zhao W C, Yang T H, et al. A 28-nm 320-kb TCAM macro
using  split-controlled  single-load  14T  cell  and  triple-margin
voltage sense amplifier. IEEE J Solid State Circuits, 2019, 54, 2743

[68]

Jiang H W, Liu R, Yu S M. 8T XNOR-SRAM based parallel compute-
in-memory for deep neural network accelerator. 2020 IEEE 63rd In-
ternational  Midwest  Symposium  on  Circuits  and  Systems,  2020,
257

[69]

Kang  M  G,  Shanbhag  N  R.  In-memory  computing  architectures
for  sparse  distributed  memory. IEEE  Trans  Biomed  Circuits  Syst,
2016, 10, 855

[70]

Jain S, Lin L Y, Alioto M. ±CIM SRAM for signed in-memory broad-
purpose  computing  from  DSP  to  neural  processing. IEEE  J  Solid
State Circuits, 2021, 56, 2981

[71]

Yue J S, Feng X Y, He Y F, et al. A 2.75-to-75.9TOPS/W computing-
in-memory  NN  processor  supporting  set-associate  block-wise
zero  skipping  and  Ping-pong  CIM  with  simultaneous  computa-
tion and weight updating. 2021 IEEE International Solid- State Cir-
cuits Conference, 2021, 238

[72]

Yang  X  X,  Zhu  K  R,  Tang  X  Y,  et  al.  An  in-memory-computing
charge-domain  ternary  CNN  classifier. 2021  IEEE  Custom  Integ-
rated Circuits Conference, 2021, 1

[73]

LeCun Y. Deep learning hardware: Past, present, and future. 2019
IEEE International Solid-State Circuits Conference, 2019, 12

[74]

Chih  Y  D,  Lee  P  H,  Fujiwara  H,  et  al.  16.4  an  89TOPS/W  and
16.3TOPS/mm2 all-digital  SRAM-based  full-precision  compute-
in  memory  macro  in  22nm  for  machine-learning  edge  applica-
tions. 2021  IEEE  International  Solid-State  Circuits  Conference,
2021, 252

[75]

Sie  S  H,  Lee J  L,  Chen Y R,  et  al.  MARS:  multi-macro architecture
SRAM CIM-based accelerator with co-designed compressed neur-
al  networks. IEEE  Trans  Comput  Aided  Des  Integr  Circuits  Syst,
2021, in press

[76]

Agrawal  A,  Kosta  A,  Kodge  S,  et  al.  CASH-RAM:  Enabling  in-
memory computations for edge inference using charge accumula-
tion  and  sharing  in  standard  8T-SRAM  arrays. IEEE  J  Emerg  Sel
Top Circuits Syst, 2020, 10, 295

[77]

Yue J S,  Yuan Z,  Feng X Y,  et al.  A 65nm computing-in-memory-
based CNN processor with 2.9-to-35.8TOPS/W system energy effi-
ciency  using  dynamic-sparsity  performance-scaling  architecture
and energy-efficient inter/intra-macro data reuse. 2020 IEEE Inter-
national Solid-State Circuits Conference, 2020, 234

[78]

Lin Z T, Zhan H L, Chen Z W, et al.  Cascade current mirror to im-[79]

prove linearity  and consistency in  SRAM in-memory computing.
IEEE J Solid State Circuits, 2021, 56, 2550
Lin Z T, Fang Y Q, Peng C Y, et al. Current mirror-based compensa-
tion  circuit  for  multi-row  read  in-memory  computing. Electron
Lett, 2019, 55, 1176

[80]

Kim Y, Kim H, Park J, et al. Mapping binary resnets on computing-
in-memory  hardware  with  low-bit  ADCs. 2021  Design,  Automa-
tion & Test in Europe Conference & Exhibition, 2021, 856

[81]

Zhiting Lin (SM’16) received the B.S.  and Ph.D.
degrees  in  electronics  and  information  engin-
eering from the University of Science and Tech-
nology  of  China  (USTC),  Hefei,  China,  in  2004
and 2009, respectively.  From 2015 to 2016,  he
was  a  visiting  scholar  with  the  Engineering
and Computer Science Department, Baylor Uni-
versity,  Waco,  TX,  USA.  In  2011,  he  joined  the
Department of Electronics and Information En-
gineering,  Anhui  University,  Hefei,  Anhui.  He
is currently a professor at the Department of In-
tegrated Circuit, Anhui University. He has pub-
lished  about  50  articles  and  holds  over  20
Chinese  patents.  His  research  interests  in-
clude  pipeline  analog-to-digital  converters
and  high-performance  static  random-access
memory.

Xiulong  Wu received  the  B.S.  degree  in  com-
puter  science  from  the  University  of  Science
and Technology of  China (USTC),  Hefei,  China,
in 2001, and the M.S. and Ph.D. degrees in elec-
tronic  engineering  from  Anhui  University,  He-
fei,  in  2005 and 2008,  respectively.  From 2013
to 2014,  he was a visiting scholar with the En-
gineering  Department,  The  University  of
Texas at Dallas, Richardson, TX, USA. He is a pro-
fessor  at  Anhui  University.  He  has  published
about 60 articles and holds over 10 Chinese pat-
ents.  His  research  interests  include  high-per-
formance  static  random-access  memory  and
mixed-signal ICs.

Journal of Semiconductors    doi: 10.1088/1674-4926/43/3/031401 25

 

 
Z T Lin et al.: A review on SRAM-based computing in-memory: Circuits, functions, and applications

 

https://doi.org/10.1109/JSSC.2019.2915577
https://doi.org/10.1109/TBCAS.2016.2545402
https://doi.org/10.1109/TBCAS.2016.2545402
https://doi.org/10.1109/JSSC.2021.3092759
https://doi.org/10.1109/JSSC.2021.3092759
https://doi.org/10.1109/TCAD.2021.3082107
https://doi.org/10.1109/TCAD.2021.3082107
https://doi.org/10.1109/JETCAS.2020.3014250
https://doi.org/10.1109/JETCAS.2020.3014250
https://doi.org/10.1109/JSSC.2021.3063719
https://doi.org/10.1049/el.2019.2415
https://doi.org/10.1049/el.2019.2415
https://doi.org/10.1109/JSSC.2019.2915577
https://doi.org/10.1109/TBCAS.2016.2545402
https://doi.org/10.1109/TBCAS.2016.2545402
https://doi.org/10.1109/JSSC.2021.3092759
https://doi.org/10.1109/JSSC.2021.3092759
https://doi.org/10.1109/TCAD.2021.3082107
https://doi.org/10.1109/TCAD.2021.3082107
https://doi.org/10.1109/JETCAS.2020.3014250
https://doi.org/10.1109/JETCAS.2020.3014250
https://doi.org/10.1109/JSSC.2021.3063719
https://doi.org/10.1049/el.2019.2415
https://doi.org/10.1049/el.2019.2415

	1 Introduction
	2 Memory cell in static random-access memory (SRAM)-based computing in-memory (CIM)
	2.1 Structure of the 6T cell
	2.1.1 Standard 6T-SRAM structure
	2.1.2 Dual-split 6T cell
	2.1.3 4+2T SRAM cell

	2.2 Cell structure with additional devices for SRAM-based CIM
	2.2.1 SRAM cells with separated read and write paths
	2.2.2 SRAM cells based on capacitive coupling
	2.2.3 Transposable SRAM cell
	2.2.4 Compact coupling structure


	3 Peripheral auxiliary circuits of the SRAM-based CIM
	3.1 Analog-to-digital conversion (ADC) circuit
	3.1.1 Quantifying BL voltage
	3.1.2 Weighting BL voltage circuits

	3.2 Digital-to-analog (DAC) conversion circuit
	3.3 Redundant reference column circuit
	3.4 Digital auxiliary computing circuit
	3.5 Analog auxiliary computing circuit

	4 Computational functions of the SRAM-based CIM
	4.1 Digital SRAM-based CIM
	4.1.1 Boolean logic (AND, OR, NAND, NOR, XNOR, XOR, and IMP)
	4.1.2 Content addressable memory (CAM)

	4.2 Mixed-signal SRAM-based CIM
	4.2.1 Single-bit operation0
	4.2.2 Multibit operation


	5 Application scenarios for CIM
	5.1 Application in CNNs
	5.2 Application in encryption algorithms
	5.3 Application in k-nearest neighbor (k-NN) algorithms
	5.4 Application in classifier algorithms

	6 Challenges and prospects
	6.1 Read-disturb issue
	6.2 Linearity and consistency problems in the SRAM-based CIM
	6.3 Challenge of the array size under the CIM architecture
	6.4 Area overhead and energy efficiency challenges of peripheral circuits
	6.5 Research prospect
	6.5.1 More efficient mapping from common operators set to actual circuits set
	6.5.2 Optimize the CIM process
	6.5.3 Realize the programmability of the SRAM-based CIM architecture


	7 Conclusion
	Acknowledgements

